Chapter 3: Problem 5
(a) Construct a wavepacket \(\Psi=\mathrm{N} \sum_{m_{\mathrm{r}}=0}^{\infty}\left(1 / m_{l} !\right) \mathrm{e}^{\mathrm{in} \varphi}\) and normalize it to unity, Sketch the form of \(|\Psi|^{2}\) for \(0 \leq \varphi \leq 2 \pi\) (b) Calculate \(\langle\varphi\rangle,\langle\sin \varphi\rangle,\) and \(\left\langle l_{z}\right\rangle\) (c) Why is \(\left\langle l_{z}\right\rangle \leq \hbar ?\) Hint. Draw on a variety of pieces of information, including \(\sum_{n=0}^{\infty} x^{n} / n !=\mathrm{e}^{x}\) and the following integrals: $$\int_{0}^{2 \pi} \mathrm{e}^{\operatorname{scos} \phi} \mathrm{d} \varphi=2 \pi I_{0}(z) \int_{0}^{2 \pi} \cos \varphi \mathrm{e}^{\sec \varphi} \mathrm{d} \varphi=2 \pi I_{1}(z)$$ with \(I_{0}(2)=2.280 \ldots, I_{1}(2)=1.591 \ldots ;\) the \(I(z)\) are modificd Bessel functions.