Chapter 4: Problem 7
(a) Confirm that the Pauli matrices \\[ \sigma_{x}=\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right) \quad \sigma_{y}=\left(\begin{array}{rr} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{array}\right) \quad \boldsymbol{\sigma}_{z}=\left(\begin{array}{rr} 1 & 0 \\ 0 & -1 \end{array}\right) \\] satisfy the angular momentum commutation relations when we write \(s_{q}=\frac{1}{2} \hbar \sigma_{q},\) and hence provide a matrix representation of angular momentum. (b) Why does the representation correspond to \(s=1 / 2\) ? Hint. For the second part, form the matrix representing \(s^{2}\) and establish its eigenvalues.