Chapter 6: Problem 19
Repeat the last problem but set \(H_{\mathrm{s}, \mathrm{s}}=\gamma\) and \(S_{\mathrm{s}^{\prime}} \neq 0\) Evaluate the overlap integrals between 1 s-orbitals on centres separated by \(R ;\) use $$S=\left\\{1+\frac{R}{a_{0}}+\frac{1}{3}\left(\frac{R}{a_{0}}\right)^{2}\right\\} \mathrm{e}^{-R / a_{0}}$$ Suppose that \(\beta / \gamma=S_{\mathrm{s}, \mathrm{s}_{2}} / S_{\mathrm{s}, \mathrm{s}} .\) For a numerical result, take \(R=80 \mathrm{pm}, a_{0}=53 \mathrm{pm}\)