Chapter 6: Problem 5
A simple calculation of the energy of the helium atom supposes that each electron occupies the same hydrogenic 1 s-orbital (but with \(Z=2\) ). The electronelectron interaction is regarded as a perturbation, and calculation gives $$\int \psi_{1 s}^{2}\left(r_{1}\right)\left(\frac{e^{2}}{4 \pi \varepsilon_{0} r_{12}}\right) \psi_{1 s}^{2}\left(r_{2}\right) \mathrm{d} \tau=\frac{5}{4}\left(\frac{e^{2}}{4 \pi \varepsilon_{0} a_{0}}\right)$$ (see Example 7.2 ). Estimate (a) the binding energy of helium, (b) its first ionization energy. Hint. Use eqn 6.15 with \(E_{1}=E_{2}=E_{1 \mathrm{s}} .\) Be careful not to count the electronelectron interaction energy twice.