Chapter 7: Problem 10
Find the first-order corrections to the energies of the hydrogen atom that result from the relativistic mass increase of the electron. Hint. The energy is related to the momentum by \(E=\left(p^{2} c^{2}+m^{2} c^{4}\right)^{1 / 2}+V .\) When \(p^{2} c^{2} \ll m^{2} c^{4}\), \(E \approx \mu c^{2}+p^{2} / 2 \mu+V-p^{4} / 8 \mu^{3} c^{2},\) where the reduced mass \(\mu\) has replaced \(m\). Ignore the rest energy \(\mu c^{2},\) which simply fixes the zero. The term \(-p^{4} / 8 \mu^{3} c^{2}\) is a perturbation; hence calculate \(\left\langle n l m_{l}\left|H^{(1)}\right| n l m_{l}\right\rangle=-\left(1 / 2 \mu c^{2}\right)\left\langle n l m_{l}\left|\left(p^{2} / 2 \mu\right)^{2}\right| n l m_{l}\right\rangle\) \(=-\left(1 / 2 \mu c^{2}\right)\left\langle n l m_{l}\left|\left(E_{n l m_{l}}-V\right)^{2}\right| n l m_{l}\right\rangle .\) We know \(E_{n l m} ;\) therefore calculate the matrix elements of \(V=-e^{2} / 4 \pi \varepsilon_{0} r\) and \(V^{2}\).