Use a minimal basis set for the \(\mathrm{M} \mathrm{O}\) description of the
molecule \(\mathrm{H}_{2} \mathrm{O}\) to show that the secular determinant
factorizes into \((1 \times 1),(2 \times 2),\) and \((3 \times 3)\) determinants.
Set up the secular determinant, denoting the Coulomb integrals
\(\alpha_{\mathrm{H}}, \alpha_{\mathrm{O}}^{\prime},\) and \(\alpha_{\mathrm{O}}\)
for \(\mathrm{H} 1 \mathrm{s}, \mathrm{O} 2 \mathrm{s},\) and \(\mathrm{O} 2
\mathrm{p},\) respectively, and writing the \((\mathrm{O} 2 \mathrm{p},
\mathrm{H} 1 \mathrm{s})\) and \((\mathrm{O} 2 \mathrm{s}, \mathrm{H} 1
\mathrm{s})\) resonance integrals as \(\beta\) and \(\beta^{\prime},\)
respectively. Neglect overlap. First, neglect the \(2 s\) -orbital, and find
expressions for the energies of the molecular orbitals for a bond angle of
\(90^{\circ}\).