Consider two Slater determinants \(\Phi_{1}\) and \(\Phi_{2}\) that differ by only
one spinorbital; that is,
$$\begin{array}{l}
\Phi_{1}=\left\|\cdots \varphi_{m} \varphi_{i} \cdots\right\| \\
\Phi_{2}=\left\|\cdots \varphi_{p} \varphi_{i} \cdots\right\|
\end{array}$$
Derive the following Condon-Slater rule:
$$\begin{aligned}
\left\langle\Phi_{1}|H|
\Phi_{2}\right\rangle=&\left\langle\varphi_{m}(1)\left|h_{1}\right|
\varphi_{p}(1)\right\rangle+\sum_{i}\left\\{\left[\varphi_{m} \varphi_{i} |
\varphi_{p} \varphi_{i}\right]\right.\\\
&\left.-\left[\varphi_{m} \varphi_{i} | \varphi, \varphi_{p}\right]\right\\}
\end{aligned}$$
where we have used the notation
$$\left[\varphi_{4} \varphi_{b} | \varphi_{c} \varphi_{d}\right]=j_{0} \int
\varphi_{a}^{*}(1) \varphi_{b}^{*}(2)\left(\frac{1}{r_{12}}\right)
\varphi_{c}(1) \varphi_{d}(2) \mathrm{d} r_{1} \mathrm{d} r_{2}$$