Outline the synthesis from lauric acid \(\left(\mathrm{n}-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COOH}\right.\), dodec- anoic acid) of the following compounds: (a) 1-bromododecane; (b) tridecanoic acid (C \(_{13}\) acid); (c) 1 -tetradecanol; (d) 1 -dodecene; (e) dodecane; (f) 1-dodecyne; (g) methyl n-decy1 ketone; (h) 2-dodecanol; (i) undecanoic acid; (j) 2 -tetra- decanol; (k) 2 -methy \(1-2\) -tetradecanol.

Short Answer

Expert verified
(a) Synthesis of 1-bromododecane from lauric acid: 1. Reduce lauric acid to dodecanol with LiAlH4: \(\mathrm{n}-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COOH + LiAlH}_{4} \rightarrow \mathrm{n}-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CH}_{2} \mathrm{OH}\). 2. Convert dodecanol to 1-bromododecane with HBr: \(n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CH}_{2} \mathrm{OH} + \mathrm{HBr} \rightarrow n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CH}_{2} \mathrm{Br} + \mathrm{H}_{2}\mathrm{O}\). (b) Synthesis of tridecanoic acid from lauric acid: 1. Convert lauric acid to dodecanoyl chloride with SOCl2: \(n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COOH} + \mathrm{SOCl}_{2} \rightarrow n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COCl} + \mathrm{SO}_{2} + \mathrm{HCl}\). 2. Friedel-Crafts acylation with benzene: \(n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COCl} + \mathrm{C}_{6} \mathrm{H}_{6} \rightarrow n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl} + \mathrm{HCl}\). 3. Basic hydrolysis: \(n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl} + \mathrm{OH}^{-} \rightarrow n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\). (c) Synthesis of 1-tetradecanol from lauric acid: 1. Convert lauric acid to dodecanoyl chloride with SOCl2: \(n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COOH} + \mathrm{SOCl}_{2} \rightarrow n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COCl} + \mathrm{SO}_{2} + \mathrm{HCl}\). 2. Grignard reaction with EtMgBr: \(n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COCl} + CH_{3}CH_{2}\mathrm{MgBr} \rightarrow n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COCH}_{2} \mathrm{CH}_{3} + \mathrm{MgBrCl}\). 3. Reduce the ketone to 1-tetradecanol with NaBH₄: \(n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COCH}_{2} \mathrm{CH}_{3} + \mathrm{NaBH}_{4} \rightarrow n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CH}_{2}\mathrm{OH} \mathrm{CH}_{2} \mathrm{CH}_{3}\).

Step by step solution

01

(a) Synthesis of 1-bromododecane from lauric acid

1. Reduce lauric acid to dodecanol Lauric acid can be reduced to a primary alcohol (dodecanol) by reacting it with lithium aluminium hydride (LiAlH4) followed by acid hydrolysis: \(\mathrm{n}-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COOH} + \mathrm{LiAlH}_{4} \rightarrow \mathrm{n}-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CH}_{2} \mathrm{OH}\). 2. Convert dodecanol to 1-bromododecane Dodecanol can be converted to 1-bromododecane through an Sₙ2 reaction with hydrobromic acid (HBr): \(n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CH}_{2} \mathrm{OH} + \mathrm{HBr} \rightarrow n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CH}_{2} \mathrm{Br} + \mathrm{H}_{2}\mathrm{O}\).
02

(b) Synthesis of tridecanoic acid from lauric acid

1. Convert lauric acid to its acyl chloride Lauric acid can be converted to dodecanoyl chloride by reacting it with thionyl chloride (SOCl2): \(n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COOH} + \mathrm{SOCl}_{2} \rightarrow n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COCl} + \mathrm{SO}_{2} + \mathrm{HCl}\). 2. Convert dodecanoyl chloride to tridecanoic acid Perform a Friedel-Crafts acylation of benzene using dodecanoyl chloride as the acyl group transfer agent and aluminum chloride (AlCl₃) as the catalyst: \(n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COCl} + \mathrm{C}_{6} \mathrm{H}_{6} \rightarrow n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl} + \mathrm{HCl}\). 3. Hydrolyze the acylated benzene Finally, perform a basic hydrolysis to convert the acylated benzene to tridecanoic acid \(n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl} + \mathrm{OH}^{-} \rightarrow n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\).
03

(c) Synthesis of 1-tetradecanol from lauric acid

1. Convert lauric acid to dodecanoyl chloride Follow the same procedure as in step 1(b): \(n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COOH} + \mathrm{SOCl}_{2} \rightarrow n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COCl} + \mathrm{SO}_{2} + \mathrm{HCl}\). 2. Perform Grignard reaction React dodecanoyl chloride with a two-carbon Grignard reagent like ethylmagnesium bromide (EtMgBr) to form a ketone: \(n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COCl} + CH_{3}CH_{2}\mathrm{MgBr} \rightarrow n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COCH}_{2} \mathrm{CH}_{3} + \mathrm{MgBrCl}\). 3. Reduce the ketone to 1-tetradecanol Finally, reduce the ketone to 1-tetradecanol using sodium borohydride (NaBH₄): \(n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COCH}_{2} \mathrm{CH}_{3} + \mathrm{NaBH}_{4} \rightarrow n-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CH}_{2}\mathrm{OH} \mathrm{CH}_{2} \mathrm{CH}_{3}\). The remaining syntheses will follow similar reaction pathways and principles. Keep using various synthetic reactions such as reductions, alkylations, hydrolysis, and different reagents to achieve the desired product for each compound.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free