Chapter 2: Problem 13
Binary presentation of the decimal number 141 is (a) 10110001 (b) 11110001 (c) 10001111 (d) 10001101
Chapter 2: Problem 13
Binary presentation of the decimal number 141 is (a) 10110001 (b) 11110001 (c) 10001111 (d) 10001101
All the tools & learning materials you need for study success - in one app.
Get started for free\(\log _{a} 1\) is equal to (a) 0 (b) 1 (c) \(\infty\) (d) 10
Expression for \(\sin C-\sin D\) is (a) \(2 \cos \frac{C-D}{2} \sin \frac{C+D}{2}\) (b) \(2 \cos \frac{C+D}{2} \sin \frac{C-D}{2}\) (c) \(2 \sin \frac{C+D}{2} \sin \frac{C-D}{2}\) (d) \(2 \cos \frac{C+D}{2} \cos \frac{C-D}{2}\)
The number of ways 5 English books and 4 Hindi books can be placed on a shelf so that the books on the same language always remain together is (a) \(5 ! 4 ! 3 !\) (b) \(5 ! 4 ! 2 !\) (c) \(4 ! 3 ! 2 !\) (d) \(5 ! 3 ! 2 !\)
The value of \(\frac{8 !}{6 !}\) is (a) 224 (b) 28 (c) 112 (d) 56
Derivative of \(x+\frac{1}{x}\) w.r.t. \(x\) is (a) \(1-\frac{1}{x^{2}}\) (b) \(1+\frac{1}{x^{2}}\) (c) \(-1+\frac{1}{x^{2}}\) (d) \(-1-\frac{1}{x^{2}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.