Chapter 5: Problem 6
Bragg's equation is a) \(2 \cap \Lambda=d \sin \theta\) b) \(n \lambda=2 d \sin \theta\) c) \(\frac{n}{\lambda}=d \sin \theta\)
Chapter 5: Problem 6
Bragg's equation is a) \(2 \cap \Lambda=d \sin \theta\) b) \(n \lambda=2 d \sin \theta\) c) \(\frac{n}{\lambda}=d \sin \theta\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn a body-centred cubic arrangement, A ions occupy the centre whil e B ions occupy corners of the cubic. The formula of the solid is. a) \(\mathrm{AB}_{2}\) b) \(\mathrm{AB}\) c) \(\mathrm{A}_{2} \mathrm{~B}\) d) None of these
The geometrical form consisting only of a regular array of points in space is called: (a) Unit cell (b) lattice (c) Crystal (d) amorphous solids
In a unit cell of \(\mathrm{NaCl}\) lattice there are: (a) \(4 \mathrm{NaCl}\) units (b) \(3 \mathrm{Na}^{+}\) ions (c) \(6 \mathrm{Na}^{+}\) ions (d) \(6 \mathrm{Cl}^{-}\) ions
If in a crystal intercepts are \(1, \infty\) and \(\infty\), the Millar indices are: (a) (100) (b) \((101)\) (c) (110) (d) (000)
Coordination number for an atom in a primitive cubic unit cell is, (a) 6 (b) 8 (c) 10 (d) 12
What do you think about this solution?
We value your feedback to improve our textbook solutions.