Use the approximate form of the Marcus relation (eqn \(24.86\) with \(f=1\) )
where bpy stands for 4,4 '-bipyridine. The following data are useful:
$$
\begin{aligned}
&\mathrm{Ru}(\mathrm{bpy})_{3}^{3+}+\mathrm{e}^{-} \rightarrow
\mathrm{Ru}(\mathrm{bpy})_{3}^{2+} \quad E^{\circ}=1.26 \mathrm{~V} \\
&\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}+\mathrm{e}^{-}
\rightarrow \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+} \quad
E^{\bullet}=0.77 \mathrm{~V} \\
&\cdot \mathrm{Ru}(\mathrm{bpy})_{3}^{3+}+\mathrm{Ru}(\mathrm{bpy})_{3}^{2+}
\rightarrow{ }^{2}
\mathrm{Ru}(\mathrm{bpy})_{3}^{2+}+\mathrm{Ru}(\mathrm{bpy})_{3}^{2+} \\
&k_{\mathrm{ku}}=4.0 \times 10^{5} \mathrm{dm}^{3} \mathrm{~mol}^{-1}
\mathrm{~s}^{-1} \\
&\cdot \mathrm{Fe}\left(\mathrm{H}_{2}
\mathrm{O}\right)_{6}^{3+}+\mathrm{Fe}\left(\mathrm{H}_{2}
\mathrm{O}\right)_{6}^{2+} \rightarrow{ }^{2} \mathrm{Fe}\left(\mathrm{H}_{2}
\mathrm{O}\right)_{6}^{2+}+\mathrm{Fe}\left(\mathrm{H}_{2}
\mathrm{O}\right)_{6}^{3+} \\
&k_{\mathrm{Fe}}=4.2 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}
\end{aligned}
$$