The removal or recovery of volatile organic compounds (VOCs) from exhaust gas
streams is an important process in environmental engineering. Activated carbon
has long been used as an adsorbent in this process, but the presence of
moisture in the stream reduces its effectiveness. M.-S. Chou and
J.-H. Chiou (J. Envir. Engrg. ASCE, \(123,437(1997)\) ) have studied the effect
of moisture content on the adsorption capacities of granular activated carbon
(GAC) for normal hexane and cyclohexane in air streams. From their data for
dry streams containing cyclohexane, shown in the table below, they conclude
that GAC obeys a Langmuir type model in which
\(\mathrm{q}_{\mathrm{VCORH}=0}=\mathrm{abc}_{\mathrm{VOC}}(1+\)
\(\left.\mathrm{bc}_{\mathrm{VOC}}\right)\), where
\(\mathrm{q}=\mathrm{m}_{\mathrm{VOC}} / \mathrm{m}_{\mathrm{GAC}}\), RH denotes
relative humidity, a the
maximum adsorption capacity, \(\mathrm{b}\) is an affinity parameter, and
\(\mathrm{c}\) is the abundance in parts per million (ppm). The following table
gives values of \(\mathrm{q}_{\mathrm{voc}, \mathrm{RH}=0}\) for cyclohexane:
$$
\begin{array}{llllll}
\text { c/ppm } & 33.6^{\circ} \mathrm{C} & 41.5^{\circ} \mathrm{C} &
57.4^{\circ} \mathrm{C} & 76.4^{\circ} \mathrm{C} & 99^{\circ} \mathrm{C} \\
200 & 0.080 & 0.069 & 0.052 & 0.042 & 0.027 \\
500 & 0.093 & 0.083 & 0.072 & 0.056 & 0.042 \\
1000 & 0.101 & 0.088 & 0.076 & 0.063 & 0.045 \\
2000 & 0.105 & 0.092 & 0.083 & 0.068 & 0.052 \\
3000 & 0.112 & 0.102 & 0.087 & 0.072 & 0.058
\end{array}
$$
(a) By linear regression of \(1 / \mathrm{q}_{\mathrm{voc}}, \mathrm{RH}=0\)
against \(1 / \mathrm{c}_{\mathrm{VOC}}\), test the goodness of fit and
determine values of a and b. (b) The parameters a and b can be related to
\(\Delta_{\mathrm{ads}} \mathrm{H}\), the enthalpy of adsorption, and
\(\Delta_{\mathrm{b}} \mathrm{H}\), the difference in activation energy for
adsorption and desorption of the VOC molecules, through Arrhenius type
equations of the form \(\mathrm{a}==\mathrm{k}_{\mathrm{a}} \exp
\left(-\Delta_{\mathrm{ads}} \mathrm{H} / \mathrm{RT}\right)\) and
\(\mathrm{b}=\mathrm{k}_{\mathrm{b}} \exp (-\)
\(\left.\mathrm{A}_{\mathrm{b}} \mathrm{H} / \mathrm{RT}\right)\). Test the
goodness of fit of the data to these equations and obtain values for
\(\mathrm{k}_{\mathrm{a}}, \mathrm{k}_{\mathrm{b}}, \Delta_{\mathrm{ads}}
\mathrm{H}\), and \(\Delta_{\mathrm{b}} \mathrm{H.}\) (c) What interpretation
might you give to \(\mathrm{k}_{\mathrm{a}}\) and \(\mathrm{k}_{\mathrm{b}}\) ?