Chapter 25: Problem 33
The removal or recovery of volatile organic compounds (VOCs) from exhaust gas streams is an important process in environmental engineering. Activated carbon has long been used as an adsorbent in this process, but the presence of moisture in the stream reduces its effectiveness. M.-S. Chou and J.-H. Chiou (J. Envir. Engrg. ASCE, \(123,437(1997)\) ) have studied the effect of moisture content on the adsorption capacities of granular activated carbon (GAC) for normal hexane and cyclohexane in air streams. From their data for dry streams containing cyclohexane, shown in the table below, they conclude that GAC obeys a Langmuir type model in which \(\mathrm{q}_{\mathrm{VCORH}=0}=\mathrm{abc}_{\mathrm{VOC}}(1+\) \(\left.\mathrm{bc}_{\mathrm{VOC}}\right)\), where \(\mathrm{q}=\mathrm{m}_{\mathrm{VOC}} / \mathrm{m}_{\mathrm{GAC}}\), RH denotes relative humidity, a the maximum adsorption capacity, \(\mathrm{b}\) is an affinity parameter, and \(\mathrm{c}\) is the abundance in parts per million (ppm). The following table gives values of \(\mathrm{q}_{\mathrm{voc}, \mathrm{RH}=0}\) for cyclohexane: $$ \begin{array}{llllll} \text { c/ppm } & 33.6^{\circ} \mathrm{C} & 41.5^{\circ} \mathrm{C} & 57.4^{\circ} \mathrm{C} & 76.4^{\circ} \mathrm{C} & 99^{\circ} \mathrm{C} \\ 200 & 0.080 & 0.069 & 0.052 & 0.042 & 0.027 \\ 500 & 0.093 & 0.083 & 0.072 & 0.056 & 0.042 \\ 1000 & 0.101 & 0.088 & 0.076 & 0.063 & 0.045 \\ 2000 & 0.105 & 0.092 & 0.083 & 0.068 & 0.052 \\ 3000 & 0.112 & 0.102 & 0.087 & 0.072 & 0.058 \end{array} $$ (a) By linear regression of \(1 / \mathrm{q}_{\mathrm{voc}}, \mathrm{RH}=0\) against \(1 / \mathrm{c}_{\mathrm{VOC}}\), test the goodness of fit and determine values of a and b. (b) The parameters a and b can be related to \(\Delta_{\mathrm{ads}} \mathrm{H}\), the enthalpy of adsorption, and \(\Delta_{\mathrm{b}} \mathrm{H}\), the difference in activation energy for adsorption and desorption of the VOC molecules, through Arrhenius type equations of the form \(\mathrm{a}==\mathrm{k}_{\mathrm{a}} \exp \left(-\Delta_{\mathrm{ads}} \mathrm{H} / \mathrm{RT}\right)\) and \(\mathrm{b}=\mathrm{k}_{\mathrm{b}} \exp (-\) \(\left.\mathrm{A}_{\mathrm{b}} \mathrm{H} / \mathrm{RT}\right)\). Test the goodness of fit of the data to these equations and obtain values for \(\mathrm{k}_{\mathrm{a}}, \mathrm{k}_{\mathrm{b}}, \Delta_{\mathrm{ads}} \mathrm{H}\), and \(\Delta_{\mathrm{b}} \mathrm{H.}\) (c) What interpretation might you give to \(\mathrm{k}_{\mathrm{a}}\) and \(\mathrm{k}_{\mathrm{b}}\) ?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.