Problem 52
What is the energy content per photon \((J)\) for light of frequency \(4.2 \times 10^{14}\) ? (a) \(2.8 \times 10^{-21}\) (b) \(2.5 \times 10^{-19}\) (c) \(2.8 \times 10^{-19}\) (d) \(2.5 \times 10^{-18}\)
Problem 55
The momentum (in \(\mathrm{kg}-\mathrm{m} / \mathrm{s}\) ) of photon having \(6 \mathrm{MeV}\) energy is : (a) \(3.2 \times 10^{-21}\) (b), \(2.0\) (c) \(1.6 \times 10^{-21}\) (d) none of these
Problem 56
The H-spectrum show: (a) Heisenberg's uncertainty principle (b) Diffraction (c) Polarization (d) Presence of quantized energy level
Problem 57
The energy of an electron moving in \(n^{\text {th }}\) Bohr's orbit of an element is given by \(E_{n}=\frac{-13.6}{n^{2}} Z^{2}\) \(\mathrm{eV} /\) atom \((Z=\) atomic number \()\). The graph of \(E\) vs. \(Z^{2}\) (keeping "n" constant) will be :
Problem 58
If \(\varepsilon_{0}\) be the permittivity of vacuum and \(r\) be the radius of orbit of \(\mathrm{H}\) -atom in which electron is revolving then velocity of electron is given by : (a) \(v=\frac{e}{\sqrt{4 \pi \varepsilon_{0} r m}}\) (b) \(v=e \times \sqrt{4 \pi \varepsilon_{0} r m}\) (c) \(v=\frac{4 \pi \varepsilon_{0} r m}{e}\) (d) \(v=\frac{4 \pi \varepsilon_{0} r m}{e^{2}}\)
Problem 61
Splitting of spectral lines under the influence of magnetic field is called (a) Zeeman effect (b) Stark effect (c) Photoelectric effect (d) None of these
Problem 66
The photoelectric emission from a surface starts only when the light incident upon the surface has certain minimum : (a) intensity (b) wavelength (c) frequency (d) velocity
Problem 67
If \(\lambda_{0}\) and \(\lambda\) be the threshold wavelength and the wavelength of incident light, the velocity of photo-electrons ejected from the metal surface is : (a) \(\sqrt{\frac{2 h}{m}\left(\lambda_{0}-\lambda\right)}\) (b) \(\sqrt{\frac{2 h c}{m}\left(\lambda_{0}-\lambda\right)}\) (c) \(\sqrt{\frac{2 h c}{m}\left(\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right)}\) (d) \(\sqrt{\frac{2 h}{m}\left(\frac{1}{\lambda_{0}}-\frac{1}{\lambda}\right)}\)
Problem 68
A light source of wavelength \(\lambda\) illuminates a metal and ejects photo- electrons with \(\left(\mathrm{K} . \mathrm{E}_{t}\right)_{\max }=1 \mathrm{eV}\) Another light source of wavelength \(\frac{\lambda}{3}\), ejects photo-electrons from same metal with (K. E.) \(_{\max }=4 \mathrm{eV}\) Find the value of work function? (a) \(1 \mathrm{eV}\) (b) \(2 \mathrm{eV}\) (c) \(0.5 \mathrm{eV}\) (d) None of these
Problem 69
Electromagnetic radiation having \(\lambda=310 \AA\) is subjected to a metal sheet having work function \(=12.8 \mathrm{eV}\). What will be the velocity of photo-electrons having maximum kinetic energy. (a) 0, no emission will occur (b) \(4.352 \times 10^{6} \mathrm{~m} / \mathrm{s}\) (c) \(3.09 \times 10^{6} \mathrm{~m} / \mathrm{s}\) (d) \(8.72 \times 10^{6} \mathrm{~m} / \mathrm{s}\)