Problem 48
Calculate average molar heat capacity at constant volume of gaseous mixture contained 2 mole of each of two ideal gases \(A\left(C_{\mathrm{v}, m}=\frac{3}{2} R\right)\) and \(B\left(C_{\mathrm{v}, m}=\frac{5}{2} R\right):\) (a) \(R\) (b) \(2 R\) (c) \(3 R\) (d) \(8 R\)
Problem 55
One mole of an ideal gas undergoes a change of state \((2.0 \mathrm{~atm}, 3.0 \mathrm{~L})\) to \((2.0 \mathrm{~atm}, 7.0 \mathrm{~L})\) with a change in internal energy \((\Delta U)=30 \mathrm{~L}-\mathrm{atm} .\) The change in enthalpy \((\Delta H)\) of the process in L-atm : (a) 22 (b) 38 (c) 25 (d) None of thése
Problem 58
One mole of a non-ideal gas undergoes a change of state from \((1.0 \mathrm{~atm}, 3.0 \mathrm{~L}, 200 \mathrm{~K})\) to \((4.0\) atm, \(5.0 \mathrm{~L}, 250 \mathrm{~K}\) ) with a change in internal energy \((\Delta U)=40 \mathrm{~L}\) -atm. The change in enthalpy of the process in L-atm : (a) 43 (b) 57 (c) 42 (d) None of these
Problem 66
Which of the following expression for an irreversible process: (a) \(d S>\frac{d q}{T}\) (b) \(d S=\frac{d q}{T}\) (c) \(d S<\frac{d q}{T}\) (d) \(d S=\frac{d U}{T}\)
Problem 67
Which of the following expressions is known as Clausius inequality? (a) \(\oint \frac{d q}{T} \leq 0\) (b) \(\oint \frac{d s}{T}=0\) (c) \(\oint \frac{T}{d q} \leq 0\) (d) \(\oint \frac{d q}{T} \geq 0\)
Problem 69
If one mole of an ideal gas \(\left(C_{p, m}=\frac{5}{2} R\right)\) is expanded isothermally at 300 until it's volume is tripled, then change in entropy of gas is : (a) zero (b) infinity (c) \(\frac{5}{2} R \ln 3\) (d) \(R \ln 3\)
Problem 71
When one mole of an ideal gas is compressed to half of its initial volume and simultaneously heated to twice its initial temperature, the change in entropy of gas \((\Delta S)\) is : (a) \(C_{p, m} \ln 2\) (b) \(C_{v, m} \ln 2\) (c) \(R \ln 2\) (d) \(\left(C_{v, m}-R\right) \ln 2\)
Problem 72
What is the change in entropy when \(2.5\) mole of water is heated from \(27^{\circ} \mathrm{C}\) to \(87^{\circ} \mathrm{C} ?\) Assume that the heat capacity is constant. \(\left(C_{p, m}\left(\mathrm{H}_{2} \mathrm{O}\right)=4.2 \mathrm{~J} / \mathrm{g}-\mathrm{K} \ln (1.2)=0.18\right)\) (a) \(16.6 \mathrm{~J} / \mathrm{K}\) (b) \(9 \mathrm{~J} / \mathrm{K}\) (c) \(34.02 \mathrm{~J} / \mathrm{K}\) (d) \(1.89 \mathrm{~J} / \mathrm{K}\)
Problem 73
Calculate standard entropy change in the reaction $$ \mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{Fe}(s)+3 \mathrm{H}_{2} \mathrm{O}(l) $$ Given : \(S_{m}^{\circ}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{~S}\right)=87.4, S_{m}^{\circ}(\mathrm{Fe}, S)=27.3\) \(S_{m}^{\circ}\left(\mathrm{H}_{2}, g\right)=130.7, S_{m}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}, l\right)=69.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\)
Problem 74
Calculate the entropy change \((\mathrm{J} / \mathrm{mol} \mathrm{K})\) of the given reaction. The molar entropies [J/K-mol] are given in brackets after each substance. \(2 \mathrm{PbS}(s)[91.2]+3 \mathrm{O}_{2}(g)[205.1] \longrightarrow 2 \mathrm{PbO}(s)[66.5]+2 \mathrm{SO}_{2}(g)[248.2]\) (a) \(-113.5\) (b) \(-168.3\) (c) \(+72.5\) (d) \(-149.2\)