Problem 48

Calculate average molar heat capacity at constant volume of gaseous mixture contained 2 mole of each of two ideal gases \(A\left(C_{\mathrm{v}, m}=\frac{3}{2} R\right)\) and \(B\left(C_{\mathrm{v}, m}=\frac{5}{2} R\right):\) (a) \(R\) (b) \(2 R\) (c) \(3 R\) (d) \(8 R\)

Problem 55

One mole of an ideal gas undergoes a change of state \((2.0 \mathrm{~atm}, 3.0 \mathrm{~L})\) to \((2.0 \mathrm{~atm}, 7.0 \mathrm{~L})\) with a change in internal energy \((\Delta U)=30 \mathrm{~L}-\mathrm{atm} .\) The change in enthalpy \((\Delta H)\) of the process in L-atm : (a) 22 (b) 38 (c) 25 (d) None of thése

Problem 58

One mole of a non-ideal gas undergoes a change of state from \((1.0 \mathrm{~atm}, 3.0 \mathrm{~L}, 200 \mathrm{~K})\) to \((4.0\) atm, \(5.0 \mathrm{~L}, 250 \mathrm{~K}\) ) with a change in internal energy \((\Delta U)=40 \mathrm{~L}\) -atm. The change in enthalpy of the process in L-atm : (a) 43 (b) 57 (c) 42 (d) None of these

Problem 66

Which of the following expression for an irreversible process: (a) \(d S>\frac{d q}{T}\) (b) \(d S=\frac{d q}{T}\) (c) \(d S<\frac{d q}{T}\) (d) \(d S=\frac{d U}{T}\)

Problem 67

Which of the following expressions is known as Clausius inequality? (a) \(\oint \frac{d q}{T} \leq 0\) (b) \(\oint \frac{d s}{T}=0\) (c) \(\oint \frac{T}{d q} \leq 0\) (d) \(\oint \frac{d q}{T} \geq 0\)

Problem 69

If one mole of an ideal gas \(\left(C_{p, m}=\frac{5}{2} R\right)\) is expanded isothermally at 300 until it's volume is tripled, then change in entropy of gas is : (a) zero (b) infinity (c) \(\frac{5}{2} R \ln 3\) (d) \(R \ln 3\)

Problem 71

When one mole of an ideal gas is compressed to half of its initial volume and simultaneously heated to twice its initial temperature, the change in entropy of gas \((\Delta S)\) is : (a) \(C_{p, m} \ln 2\) (b) \(C_{v, m} \ln 2\) (c) \(R \ln 2\) (d) \(\left(C_{v, m}-R\right) \ln 2\)

Problem 72

What is the change in entropy when \(2.5\) mole of water is heated from \(27^{\circ} \mathrm{C}\) to \(87^{\circ} \mathrm{C} ?\) Assume that the heat capacity is constant. \(\left(C_{p, m}\left(\mathrm{H}_{2} \mathrm{O}\right)=4.2 \mathrm{~J} / \mathrm{g}-\mathrm{K} \ln (1.2)=0.18\right)\) (a) \(16.6 \mathrm{~J} / \mathrm{K}\) (b) \(9 \mathrm{~J} / \mathrm{K}\) (c) \(34.02 \mathrm{~J} / \mathrm{K}\) (d) \(1.89 \mathrm{~J} / \mathrm{K}\)

Problem 73

Calculate standard entropy change in the reaction $$ \mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{Fe}(s)+3 \mathrm{H}_{2} \mathrm{O}(l) $$ Given : \(S_{m}^{\circ}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{~S}\right)=87.4, S_{m}^{\circ}(\mathrm{Fe}, S)=27.3\) \(S_{m}^{\circ}\left(\mathrm{H}_{2}, g\right)=130.7, S_{m}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}, l\right)=69.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\)

Problem 74

Calculate the entropy change \((\mathrm{J} / \mathrm{mol} \mathrm{K})\) of the given reaction. The molar entropies [J/K-mol] are given in brackets after each substance. \(2 \mathrm{PbS}(s)[91.2]+3 \mathrm{O}_{2}(g)[205.1] \longrightarrow 2 \mathrm{PbO}(s)[66.5]+2 \mathrm{SO}_{2}(g)[248.2]\) (a) \(-113.5\) (b) \(-168.3\) (c) \(+72.5\) (d) \(-149.2\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Chemistry Textbooks