Chapter 1: Problem 2
Determine the exact values of a. \(\sin \frac{\pi}{8}\). b. \(\tan 15^{\circ}\). c. \(\cos 105^{\circ}\).
Chapter 1: Problem 2
Determine the exact values of a. \(\sin \frac{\pi}{8}\). b. \(\tan 15^{\circ}\). c. \(\cos 105^{\circ}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite the following in terms of logarithms: a. \(\cosh ^{-1} \frac{4}{3}\). b. \(\tanh ^{-1} \frac{1}{2}\). c. \(\sinh ^{-1} 2\).
Consider Gregory's expansion $$ \tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1} $$ a. Derive Gregory's expansion using the definition $$ \tan ^{-1} x=\int_{0}^{x} \frac{d t}{1+t^{2}} $$ expanding the integrand in a Maclaurin series, and integrating the resulting series term by term. b. From this result, derive Gregory's series for \(\pi\) by inserting an appropriate value for \(x\) in the series expansion for \(\tan ^{-1} x\).
Here are some telescoping series problems: a. Verify that $$ \sum_{n=1}^{\infty} \frac{1}{(n+2)(n+1)}=\sum_{n=1}^{\infty}\left(\frac{n+1}{n+2}-\frac{n}{n+1}\right) $$ b. Find the \(n\)th partial sum of the series \(\sum_{n=1}^{\infty}\left(\frac{n+1}{n+2}-\frac{n}{n+1}\right)\) and use it to determine the sum of the resulting telescoping series. c. Sum the series \(\sum_{n=1}^{\infty}\left[\tan ^{-1} n-\tan ^{-1}(n+1)\right]\) by first writing the \(N\) th partial sum and then computing \(\lim _{N \rightarrow \infty} s_{N}\)
Solve the following equations for \(x\) : a. \(\cosh (x+\ln 3)=3\) b. \(2 \tanh ^{-1} \frac{x-2}{x-1}=\ln 2\). c. \(\sinh ^{2} x-7 \cosh x+13=0\).
Determine the radius and interval of convergence of the following infinite series: a. \(\sum_{n=1}^{\infty}(-1)^{n} \frac{(x-1)^{n}}{n}\) b. \(\sum_{n=1}^{\infty} \frac{x^{n}}{2^{n} n !}\). c. \(\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{x}{5}\right)^{n}\). d. \(\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{\sqrt{n}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.