Chapter 1: Problem 2
Determine the exact values of a. \(\sin \frac{\pi}{8}\). b. \(\tan 15^{\circ}\). c. \(\cos 105^{\circ}\).
Chapter 1: Problem 2
Determine the exact values of a. \(\sin \frac{\pi}{8}\). b. \(\tan 15^{\circ}\). c. \(\cos 105^{\circ}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeIn the event that a series converges uniformly, one can consider the derivative of the series to arrive at the summation of other infinite series. a. Differentiate the series representation for \(f(x)=\frac{1}{1-x}\) to sum the series \(\sum_{n=1}^{\infty} n x^{n},|x|<1\) b. Use the result from part a to sum the series \(\sum_{n=1}^{\infty} \frac{n}{5^{n}}\) c. Sum the series \(\sum_{n=2}^{\infty} n(n-1) x^{n},|x|<1\) d. Use the result from part \(c\) to sum the series \(\sum_{n=2}^{\infty} \frac{n^{2}-n}{5^{n}}\) e. Use the results from this problem to sum the series \(\sum_{n=4}^{\infty} \frac{n^{2}}{5^{n}}\)
Consider Gregory's expansion $$ \tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1} $$ a. Derive Gregory's expansion using the definition $$ \tan ^{-1} x=\int_{0}^{x} \frac{d t}{1+t^{2}} $$ expanding the integrand in a Maclaurin series, and integrating the resulting series term by term. b. From this result, derive Gregory's series for \(\pi\) by inserting an appropriate value for \(x\) in the series expansion for \(\tan ^{-1} x\).
Determine the radius and interval of convergence of the following infinite series: a. \(\sum_{n=1}^{\infty}(-1)^{n} \frac{(x-1)^{n}}{n}\) b. \(\sum_{n=1}^{\infty} \frac{x^{n}}{2^{n} n !}\). c. \(\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{x}{5}\right)^{n}\). d. \(\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{\sqrt{n}}\).
Prove the following identities using only the definitions of the trigonometric functions, the Pythagorean identity, or the identities for sines and cosines of sums of angles. a. \(\cos 2 x=2 \cos ^{2} x-1\) b. \(\sin 3 x=A \sin ^{3} x+B \sin x\), for what values of \(A\) and \(B\) ? c. \(\sec \theta+\tan \theta=\tan \left(\frac{\theta}{2}+\frac{\pi}{4}\right)\)
Determine the exact values of a. \(\sin \left(\cos ^{-1} \frac{3}{5}\right)\). b. \(\tan \left(\sin ^{-1} \frac{x}{7}\right)\). c. \(\sin ^{-1}\left(\sin \frac{3 \pi}{2}\right)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.