Chapter 10: Problem 12
Given the cylinder defined by \(x^{2}+y^{2}=4\), find the path of shortest length connecting the given points. a. \((2,0,0)\) and \((0,2,5)\) b. \((2,0,0)\) and \((2,0,5)\)
Chapter 10: Problem 12
Given the cylinder defined by \(x^{2}+y^{2}=4\), find the path of shortest length connecting the given points. a. \((2,0,0)\) and \((0,2,5)\) b. \((2,0,0)\) and \((2,0,5)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFor each problem, locate the critical points and classify each one using the second derivative test. a. \(f(x, y)=(x+y)^{2}\). b. \(f(x, y)=x^{2} y+x y^{2}\). c. \(f(x, y)=x^{4} y+x y^{4}-x y .\) d. \(f(x, y)=x^{2}-3 x y+2 x+10 y+6 y^{2}+12\). e. \(f(x, y)=\left(x^{2}-y^{2}\right) e^{-y}\)
A thin plate has a temperature distribution of \(T(x, y)=x^{2}-y^{3}-x^{2} y+\) \(y+20\) for \(0 \leq x, y, \leq 2\). Find the coldest and hottest points on the plate.
For each problem, locate the critical points and evaluate the Hessian matrix at each critical point. a. \(f(x, y)=(x+y)^{2}\) b. \(f(x, y)=x^{2} y+x y^{2}\) c. \(f(x, y)=x^{4} y+x y^{4}-x y\) d. \(f(x, y, z)=x y+x z+y z\). e. \(f(x, y, z)=x^{2}+y^{2}+x z+2 z^{2}\)
A particle moves under the force field \(F=-\nabla V\), where the potential function is given by \(V(x, y)=x^{3}+y^{3}-3 x y+5\). Find the equilibrium points of \(\mathbf{F}\) and determine if the equilibria are stable or unstable.
For each of the following, find a path that extremizes the given integral. a. \(f_{1}^{2}\left(y^{\prime 2}+2 y y^{\prime}+y^{2}\right) d y, y(1)=0, y(2)=1\). b. \(f_{0}^{2} y^{2}\left(1-y^{2}\right) d y, y(0)=1, y(2)=2\). c. \(f_{-1}^{1} 5 y^{\prime 2}+2 y y^{\prime} d y, y(-1)=1, y(1)=0\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.