Use deMoivre's Theorem to write \(\sin ^{3} \theta\) in terms of \(\sin \theta\) and \(\sin 3 \theta .\)

Short Answer

Expert verified
The expression \( \sin^3 \theta \) can be written in terms of \( \sin \theta \) and \( \sin 3\theta \) as \( \frac{1}{4}(\sin 3\theta + 3\sin \theta) \).

Step by step solution

01

Express using deMoivre's Theorem

Express \( \sin^3 \theta \) as \( \frac{(e^{i\theta} - e^{-i\theta})^3}{(2i)^3} \) using the complex form of sine function and apply Binomial Theorem.
02

Simplify the equation

Simplify the equation and convert the equation in the form of cosine function. After simplifying, we get \( \frac{e^{3i\theta} + 3e^{i\theta} - 3e^{-i\theta} - e^{-3i\theta}}{8i} \).
03

Apply trigonometric identities

Now apply trigonometric identities to transform the equation back into sinusoidal form. The expression simplifies to \( \frac{1}{4}(\sin 3\theta + 3\sin \theta) \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the sum \(\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+1)}\) a. Use an appropriate convergence test to show that this series converges. b. Verify that $$ \sum_{n=1}^{\infty} \frac{1}{(n+2)(n+1)}=\sum_{n=1}^{\infty}\left(\frac{n+1}{n+2}-\frac{n}{n+1}\right) $$ c. Find the \(n\)th partial sum of the series \(\sum_{n=1}^{\infty}\left(\frac{n+1}{n+2}-\frac{n}{n+1}\right)\) and use it to determine the sum of the resulting telescoping series.

Determine the radius and interval of convergence of the following infinite series: a. \(\sum_{n=1}^{\infty}(-1)^{n} \frac{(x-1)^{n}}{n}\) b. \(\sum_{n=1}^{\infty} \frac{x^{n}}{2^{n} n !}\) c. \(\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{x}{5}\right)^{n}\) d. \(\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{\sqrt{n}}\)

Find the sum for each of the series: a. \(\sum_{n=0}^{\infty} \frac{(-1)^{n} 3}{4^{n}}\) b. \(\sum_{n=2}^{\infty} \frac{2}{5^{n}}\). c. \(\sum_{n=0}^{\infty}\left(\frac{5}{2^{n}}+\frac{1}{3^{n}}\right)\). d. \(\sum_{n=1}^{\infty} \frac{3}{n(n+3)} .\)

Recall that the alternating harmonic series converges conditionally. a. From the Taylor series expansion for \(f(x)=\ln (1+x)\), inserting \(x=1\) gives the alternating harmonic series. What is the sum of the alternating harmonic series? b Because the alternating harmonic series does not converge absolutely, a rearrangement of the terms in the series will result in series whose sums vary. One such rearrangement in alternating \(p\) positive terms and \(n\) negative terms leads to the following sum \(^{10}\) : $$ \begin{gathered} \frac{1}{2} \ln \frac{4 p}{n}=\underbrace{\left(1+\frac{1}{3}+\cdots+\frac{1}{2 p-1}\right)}_{p \text { terms }}-\underbrace{\left(\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2 n}\right)}_{n \text { terms }} \\ +\underbrace{\left(\frac{1}{2 p+1}+\cdots+\frac{1}{4 p-1}\right)}_{p \text { terms }}-\underbrace{\left(\frac{1}{2 n+2}+\cdots+\frac{1}{4 n}\right)}_{n \text { terms }}+\cdots . \end{gathered} $$ Find rearrangements of the alternating harmonic series to give the following sums; that is, determine \(p\) and \(n\) for the given expression and write down the above series explicitly; that is, determine \(p\) and \(n\) leading to the following sums. i. \(\frac{5}{2} \ln 2\). ii. \(\ln 8\). iii. \(0 .\) iv. A sum that is close to \(\pi\).

Determine if the following converge, or diverge, using one of the convergence tests. If the series converges, is it absolute or conditional? a. \(\sum_{n=1}^{\infty} \frac{n+4}{2 n^{3}+1} .\) b. \(\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}\) c. \(\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}\). d. \(\sum_{n=1}^{\infty}(-1)^{n} \frac{n-1}{2 n^{2}-3} .\) e. \(\sum_{n=1}^{\infty} \frac{\ln n}{n}\) f. \(\sum_{n=1}^{\infty} \frac{100^{n}}{n^{200}} .\) g. \(\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+3}\). h. \(\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{5 n}}{n+1}\).

See all solutions

Recommended explanations on Combined Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free