Consider the following systems. For each system, determine the coefficient
matrix. When possible, solve the eigenvalue problem for each matrix and use
the eigenvalues and eigenvectors to provide solutions to the given systems.
Finally, in the common cases that you investigated in Problem 2.31, make
comparisons with your previous answers, such as what type of eigenvalues
correspond to stable nodes.
a.
$$
\begin{aligned}
&x^{\prime}=3 x-y \\
&y^{\prime}=2 x-2 y
\end{aligned}
$$
b.
$$
\begin{aligned}
&x^{\prime}=-y_{t} \\
&y^{\prime}=-5 x
\end{aligned}
$$
c.
$$
\begin{aligned}
&x^{\prime}=x-y_{r} \\
&y^{\prime}=y
\end{aligned}
$$
d.
$$
\begin{aligned}
&x^{\prime}=2 x+3 y \\
&y^{\prime}=-3 x+2 y
\end{aligned}
$$
e.
$$
\begin{aligned}
x^{\prime} &=-4 x-y \\
y^{\prime} &=x-2 y
\end{aligned}
$$
\(\mathrm{f}\).
$$
\begin{aligned}
x^{\prime} &=x-y \\
y^{\prime} &=x+y
\end{aligned}
$$