Chapter 3: Problem 8
Use Cramer's Rule to solve the system: $$ \begin{array}{r} 2 x-5 z=7 \\ x-2 y=1 \\ 3 x-5 y-z=4 \end{array} $$
Chapter 3: Problem 8
Use Cramer's Rule to solve the system: $$ \begin{array}{r} 2 x-5 z=7 \\ x-2 y=1 \\ 3 x-5 y-z=4 \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the matrix $$ A=\left(\begin{array}{ccc} -0.8124 & -0.5536 & -0.1830 \\ -0.3000 & 0.6660 & -0.6830 \\ 0.5000 & -0.5000 & -0.7071 \end{array}\right) $$ This matrix represents the active rotation through three Euler angles. Determine the possible angles of rotation leading to this matrix.
Prove the following for matrices \(A, B\), and \(C\). a. \((A B) C=A(B C)\). b. \((A B)^{T}=B^{T} A^{T}\) c. \(\operatorname{tr}(A)\) is invariant under similarity transformations. d. If \(A\) and \(B\) are orthogonal, then \(A B\) is orthogonal.
Consider the three-dimensional Euler rotation matrix \(\hat{R}(\phi, \theta, \psi)=\) \(\hat{R}_{z}(\psi) \hat{R}_{x}(\theta) \hat{R}_{z}(\phi)\) a. Find the elements of \(\hat{R}(\phi, \theta, \psi)\). b. Compute \(\operatorname{Tr}(\hat{R}(\phi, \theta, \psi)\). c. Show that \(\hat{R}^{-1}(\phi, \theta, \psi)=\hat{R}^{T}(\phi, \theta, \psi)\). d. Show that \(\hat{R}^{-1}(\phi, \theta, \psi)=\hat{R}(-\psi,-\theta,-\phi)\).
Consider the matrix $$ A=\left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \end{array}\right) $$ a. Verify that this is a rotation matrix. b. Find the angle and axis of rotation. c. Determine the corresponding similarity transformation using the results from part b.
Consider the following systems. For each system, determine the coefficient matrix. When possible, solve the eigenvalue problem for each matrix and use the eigenvalues and eigenvectors to provide solutions to the given systems. Finally, in the common cases that you investigated in Problem 2.31, make comparisons with your previous answers, such as what type of eigenvalues correspond to stable nodes. a. $$ \begin{aligned} &x^{\prime}=3 x-y \\ &y^{\prime}=2 x-2 y \end{aligned} $$ b. $$ \begin{aligned} &x^{\prime}=-y_{t} \\ &y^{\prime}=-5 x \end{aligned} $$ c. $$ \begin{aligned} &x^{\prime}=x-y_{r} \\ &y^{\prime}=y \end{aligned} $$ d. $$ \begin{aligned} &x^{\prime}=2 x+3 y \\ &y^{\prime}=-3 x+2 y \end{aligned} $$ e. $$ \begin{aligned} x^{\prime} &=-4 x-y \\ y^{\prime} &=x-2 y \end{aligned} $$ \(\mathrm{f}\). $$ \begin{aligned} x^{\prime} &=x-y \\ y^{\prime} &=x+y \end{aligned} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.