Chapter 5: Problem 17
Consider the function \(f(x)=x,-\pi
Chapter 5: Problem 17
Consider the function \(f(x)=x,-\pi
All the tools & learning materials you need for study success - in one app.
Get started for freeFind product solutions, \(u(x, t)=b(t) \phi(x)\), to the wave equation satisfying the boundary conditions \(u(0, t)=0\) and \(u_{x}(1, t)=0\). Use these solutions to find a general solution of the heat equation satisfying these boundary conditions.
Write \(y(t)=3 \cos 2 t-4 \sin 2 t\) in the form \(y(t)=A \cos (2 \pi f t+\phi)\)
Consider the boundary value problem for the deflection of a horizontal beam fixed at one end, $$ \frac{d^{4} y}{d x^{4}}=C, \quad y(0)=0, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(L)=0, \quad y^{\prime \prime \prime}(L)=0 $$ Solve this problem assuming that \(C\) is a constant.
Consider the following boundary value problems. Determine the eigenvalues \(\lambda\) and eigenfunctions \(y(x)\) for each problem. a. \(y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(1)=0\). b. \(y^{\prime \prime}-\lambda y=0, \quad y(-\pi)=0, \quad y^{\prime}(\pi)=0\). c. \(x^{2} y^{\prime \prime}+x y^{\prime}+\lambda y=0, \quad y(1)=0, \quad y(2)=0\). d. \(\left(x^{2} y^{\prime}\right)^{\prime}+\lambda y=0, \quad y(1)=0, \quad y^{\prime}(e)=0\).
Find the Fourier series of each function \(f(x)\) of period \(2 \pi\). For each
series, plot the Nth partial sum,
$$
S_{N}=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos n x+b_{n} \sin n x\right]
$$
for \(N=5,10,50\) and describe the convergence (Is it fast? What is it
converging to?, etc.) [Some simple Maple code for computing partial sums is
shown in the notes.]
a. \(f(x)=x,|x|<\pi\).
b. \(f(x)=|x|,|x|<\pi\).
c. \(f(x)= \begin{cases}0, & -\pi
What do you think about this solution?
We value your feedback to improve our textbook solutions.