Chapter 6: Problem 12
The Hermite polynomials, \(H_{n}(x)\), satisfy the following:
i. \(
Chapter 6: Problem 12
The Hermite polynomials, \(H_{n}(x)\), satisfy the following:
i. \(
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the Gram-Schmidt process to find the first four orthogonal polynols satisfying the following: a. Interval: \((-\infty, \infty)\) Weight Function: \(e^{-x^{2}}\). b. Interval: \((0, \infty)\) Weight Function: \(e^{-x}\).
Find the eigenvalues and eigenfunctions of the given Sturm-Liouville lems: a. \(y^{\prime \prime}+\lambda y=0, y^{\prime}(0)=0=y^{\prime}(\pi)\) b. \(\left(x y^{\prime}\right)^{\prime}+\frac{\lambda}{x} y=0, y(1)=y\left(e^{2}\right)=0\).
Prove Green's identity \(\int_{a}^{b}(u \mathcal{L} v-v \mathcal{L} u) d x=\left.\left[p\left(u v^{\prime}-v u^{\prime}\right)\right]\right|_{a} ^{b}\) for the eral Sturm-Liouville operator \(\mathcal{L}\).
In Example 6.20, we found a bound on the lowest eigenvalue for the n
eigenvalue problem.
a. Verify the computation in the example.
b. Apply the method using
$$
y(x)=\left\\{\begin{array}{cl}
x, & 0
Consider the problem: $$ \frac{\partial^{2} G}{\partial x^{2}}=\delta\left(x-x_{0}\right), \quad \frac{\partial G}{\partial x}\left(0, x_{0}\right)=0, \quad G\left(\pi, x_{0}\right)=0 $$ a. Solve by direct integration. b. Compare this result to the Green's function in part b of Problem \(31 .\) c. Verify that \(G\) is symmetric in its arguments.
What do you think about this solution?
We value your feedback to improve our textbook solutions.