Chapter 6: Problem 28
In Example 6.20, we found a bound on the lowest eigenvalue for the n
eigenvalue problem.
a. Verify the computation in the example.
b. Apply the method using
$$
y(x)=\left\\{\begin{array}{cl}
x, & 0
Chapter 6: Problem 28
In Example 6.20, we found a bound on the lowest eigenvalue for the n
eigenvalue problem.
a. Verify the computation in the example.
b. Apply the method using
$$
y(x)=\left\\{\begin{array}{cl}
x, & 0
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the method of eigenfunction expansions to solve the problems: a. \(y^{\prime \prime}+4 y=x^{2}, \quad y^{\prime}(0)=y^{\prime}(1)=0\). b. \(y+4 y=x^{2} \quad y(0)=y(1)=0\).
Bessel functions \(J_{p}(\lambda x)\) are solutions of \(x^{2} y^{\prime \prime}+x y^{\prime}+\left(\lambda^{2} x^{2}-p^{2}\right) y=\) 0. Assume that \(x \in(0,1)\) and that \(J_{p}(\lambda)=0\) and \(J_{p}(0)\) is finite.s a. Show that this equation can be written in the form $$ \frac{d}{d x}\left(x \frac{d y}{d x}\right)+\left(\lambda^{2} x-\frac{p^{2}}{x}\right) y=0 $$ This is the standard Sturm-Liouville form for Bessel's equation. b. Prove that $$ \int_{0}^{1} x J_{p}(\lambda x) J_{p}(\mu x) d x=0, \quad \lambda \neq \mu $$ by considering $$ \int_{0}^{1}\left[J_{p}(\mu x) \frac{d}{d x}\left(x \frac{d}{d x} J_{p}(\lambda x)\right)-J_{p}(\lambda x) \frac{d}{d x}\left(x \frac{d}{d x} J_{p}(\mu x)\right)\right] d x $$ Thus, the solutions corresponding to different eigenvalues \((\lambda, \mu)\) are orthogonal. c. Prove that $$ \int_{0}^{1} x\left[J_{p}(\lambda x)\right]^{2} d x=\frac{1}{2} J_{p+1}^{2}(\lambda)=\frac{1}{2} J_{p}^{\prime 2}(\lambda) $$
Determine the solvability conditions for the nonhomogeneous boundralue problem: \(u^{\prime}(\pi / 4)=\beta\).
Prove Green's identity \(\int_{a}^{b}(u \mathcal{L} v-v \mathcal{L} u) d x=\left.\left[p\left(u v^{\prime}-v u^{\prime}\right)\right]\right|_{a} ^{b}\) for the eral Sturm-Liouville operator \(\mathcal{L}\).
Find the eigenvalues and eigenfunctions of the given Sturm-Liouville lems: a. \(y^{\prime \prime}+\lambda y=0, y^{\prime}(0)=0=y^{\prime}(\pi)\) b. \(\left(x y^{\prime}\right)^{\prime}+\frac{\lambda}{x} y=0, y(1)=y\left(e^{2}\right)=0\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.