Chapter 7: Problem 3
Write the following in rectangular form, \(z=a+i b\). a. \(4 e^{i \pi / 6}\) b. \(\sqrt{2} e^{5 i \pi / 4}\) c. \((1-i)^{100} .\)
Chapter 7: Problem 3
Write the following in rectangular form, \(z=a+i b\). a. \(4 e^{i \pi / 6}\) b. \(\sqrt{2} e^{5 i \pi / 4}\) c. \((1-i)^{100} .\)
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that for \(g\) and \(h\) analytic functions at \(z_{0}\), with \(g\left(z_{0}\right) \neq 0, h\left(z_{0}\right)=0\), and \(h^{\prime}\left(z_{0}\right) \neq 0\) $$ \operatorname{Res}\left[\frac{g(z)}{h(z)} ; z_{0}\right]=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)} $$
. For the following, determine if the given point is a removable singularity, an essential singularity, or a pole (indicate its order). a. \(\frac{1-\cos z}{z^{2}}, \quad z=0\) b. \(\frac{\sin 2}{z^{2}}, \quad z=0\) c. \(\frac{z^{2}-1}{(z-1)^{2}}, \quad z=1\). d. \(z e^{1 / z}, \quad z=0\). e. \(\cos \frac{\pi}{\pi-\pi}, \quad z=\pi\)
Find all \(z\) such that \(z^{4}=16 i\). Write the solutions in rectangular form, \(z=a+i b\), with no decimal approximation or trig functions.
Let \(f(z)=u+i v\) be differentiable. Consider the vector field given by \(\mathbf{F}=v \mathbf{i}+u \mathbf{j}\). Show that the equations \(\nabla \cdot \mathbf{F}=\mathbf{0}\) and \(\nabla \times \mathbf{F}=\mathbf{0}\) are equivalent to the Cauchy-Riemann Equations. [You will need to recall from multivariable calculus the del operator, \(\left.\nabla=\mathbf{i} \frac{\partial}{\partial x}+\mathrm{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z} \cdot\right]\)
Show that \(\sin (x+i y)=\sin x \cosh y+i \cos x \sinh y\) using trigonometric identities and the exponential forms of these functions.
What do you think about this solution?
We value your feedback to improve our textbook solutions.