Chapter 8: Problem 11
Show that the convolution operation is associative: \((f *(g * h))(t)=\) \(((f * g) * h)(t)\)
Chapter 8: Problem 11
Show that the convolution operation is associative: \((f *(g * h))(t)=\) \(((f * g) * h)(t)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind a Fourier series representation of the Dirac delta function, \(\delta(x)\), on \([-L, L]\)
Use Laplace transforms to solve the following initial value problems. Where possible, describe the solution behavior in terms of oscillation and decay. a. \(y^{\prime \prime}-5 y^{\prime}+6 y=0, y(0)=2, y^{\prime}(0)=0\). b. \(y^{\prime \prime}-y=t e^{2 t}, y(0)=0, y^{\prime}(0)=1\). c. \(y^{\prime \prime}+4 y=\delta(t-1), y(0)=3, y^{\prime}(0)=0\). d. \(y^{\prime \prime}+6 y^{\prime}+18 y=2 H(\pi-t), y(0)=0, y^{\prime}(0)=0\).
Use the Convolution Theorem to compute the inverse transform of the following: a. \(F(s)=\frac{2}{s^{2}\left(s^{2}+1\right)} .\) b. \(F(s)=\frac{e^{-3 s}}{s^{2}}\) c. \(F(s)=\frac{1}{s\left(s^{2}+2 s+5\right)}\)
In this problem you will show that the sequence of functions $$ f_{n}(x)=\frac{n}{\pi}\left(\frac{1}{1+n^{2} x^{2}}\right) $$ approaches \(\delta(x)\) as \(n \rightarrow \infty\). Use the following to support your argument: a. Show that \(\lim _{n \rightarrow \infty} f_{n}(x)=0\) for \(x \neq 0\). b. Show that the area under each function is one.
Find the inverse Laplace transform in two different ways: (i) Use tables. (ii) Use the Bromwich Integral. a. \(F(s)=\frac{1}{s^{3}(s+4)^{2}}\) b. \(F(s)=\frac{1}{s^{2}-4 s-5}\) c. \(F(s)=\frac{s+3}{s^{2}+8 s+17}\) d. \(F(s)=\frac{s+1}{(s-2)^{2}(s+4)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.