Chapter 8: Problem 2
Verify that the sequence of functions \(\left\\{f_{n}(x)\right\\}_{n=1}^{\infty}\), defined by \(f_{n}(x)=\) \(\frac{n}{2} e^{-n|x|}\), approaches a delta function.
Chapter 8: Problem 2
Verify that the sequence of functions \(\left\\{f_{n}(x)\right\\}_{n=1}^{\infty}\), defined by \(f_{n}(x)=\) \(\frac{n}{2} e^{-n|x|}\), approaches a delta function.
All the tools & learning materials you need for study success - in one app.
Get started for freeDo the following: a. Find the first four nonvanishing terms of the Maclaurin series expansion of \(f(x)=\frac{x}{e^{x}-1} .\) b. Use the result in part a. to determine the first four nonvanishing Bernoulli numbers, \(B_{n}\). c. Use these results to compute \(\zeta(2 n)\) for \(n=1,2,3,4\).
Use Laplace transforms to convert the following system of differential equations into an algebraic system, and find the solution of the differential equations. $$ \begin{array}{ll} x^{\prime \prime}=3 x-6 y, & x(0)=1, & x^{\prime}(0)=0 \\ y^{\prime \prime}=x+y, & y(0)=0, & y^{\prime}(0)=0 \end{array} $$
For the following problems, draw the given function and find the Laplace transform in closed form. a. \(f(t)=1+\sum_{n=1}^{\infty}(-1)^{n} H(t-n)\). b. \(f(t)=\sum_{n=0}^{\infty}[H(t-2 n+1)-H(t-2 n)] .\) $$ \begin{aligned} &\text { c. } f(t)=\sum_{n=0}^{\infty}(t-2 n)[H(t-2 n)-H(t-2 n-1)]+(2 n+2-t)[H(t-1 \\ &2 n-1)-H(t-2 n-2)] \end{aligned} $$
Find the inverse Laplace transform in two different ways: (i) Use tables. (ii) Use the Bromwich Integral. a. \(F(s)=\frac{1}{s^{3}(s+4)^{2}}\) b. \(F(s)=\frac{1}{s^{2}-4 s-5}\) c. \(F(s)=\frac{s+3}{s^{2}+8 s+17}\) d. \(F(s)=\frac{s+1}{(s-2)^{2}(s+4)}\)
Define the integrals \(I_{n}=\int_{-\infty}^{\infty} x^{2 n} e^{-x^{2}} d x .\) Noting that \(I_{0}=\sqrt{\pi}\) a. Find a recursive relation between \(I_{n}\) and \(I_{n-1} .\) b. Use this relation to determine \(I_{1}, I_{2}\), and \(I_{3}\). c. Find an expression in terms of \(n\) for \(I_{n}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.