Chapter 8: Problem 2
Verify that the sequence of functions \(\left\\{f_{n}(x)\right\\}_{n=1}^{\infty}\), defined by \(f_{n}(x)=\) \(\frac{n}{2} e^{-n|x|}\), approaches a delta function.
Chapter 8: Problem 2
Verify that the sequence of functions \(\left\\{f_{n}(x)\right\\}_{n=1}^{\infty}\), defined by \(f_{n}(x)=\) \(\frac{n}{2} e^{-n|x|}\), approaches a delta function.
All the tools & learning materials you need for study success - in one app.
Get started for freeA damped harmonic oscillator is given by $$ f(t)=\left\\{\begin{array}{cl} A e^{-a t} e^{i \omega_{0} t}, & t \geq 0 \\ 0, & t<0 \end{array}\right. $$ a. Find \(\hat{f}(\omega)\) and b. the frequency distribution \(|\hat{f}(\omega)|^{2}\). c. Sketch the frequency distribution.
Find the Fourier transform, \(\hat{f}(k)\), of \(f(x)=e^{-2 x^{2}+x}\).
Use Laplace transforms to prove $$ \sum_{n=1}^{\infty} \frac{1}{(n+a)(n+b)}=\frac{1}{b-a} \int_{0}^{1} \frac{u^{a}-u^{b}}{1-u} d u $$ Use this result to evaluate the following sums: a. \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\) b. \(\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}\)
Use Laplace transforms to solve the following initial value problems. Where possible, describe the solution behavior in terms of oscillation and decay. a. \(y^{\prime \prime}-5 y^{\prime}+6 y=0, y(0)=2, y^{\prime}(0)=0\). b. \(y^{\prime \prime}-y=t e^{2 t}, y(0)=0, y^{\prime}(0)=1\). c. \(y^{\prime \prime}+4 y=\delta(t-1), y(0)=3, y^{\prime}(0)=0\). d. \(y^{\prime \prime}+6 y^{\prime}+18 y=2 H(\pi-t), y(0)=0, y^{\prime}(0)=0\).
Show that the convolution operation is associative: \((f *(g * h))(t)=\) \(((f * g) * h)(t)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.