Use Laplace transforms to convert the following nonhomogeneous systems of
differential equations into an algebraic system, and find the solutions of the
differential equations.
a.
$$
\begin{aligned}
&x^{\prime}=2 x+3 y+2 \sin 2 t, \quad x(0)=1 \\
&y^{\prime}=-3 x+2 y, \quad y(0)=0
\end{aligned}
$$
\(\mathrm{b}\)
$$
\begin{aligned}
&x^{\prime}=-4 x-y+e^{-1}, \quad x(0)=2 \\
&y^{\prime}=x-2 y+2 e^{-3 t}, \quad y(0)=-1
\end{aligned}
$$
c.
$$
\begin{array}{ll}
x^{\prime} & =x-y+2 \cos t, & x(0)=3 \\
y^{\prime} & =x+y-3 \sin t, & y(0)=2
\end{array}
$$