Use Laplace transforms to prove $$ \sum_{n=1}^{\infty} \frac{1}{(n+a)(n+b)}=\frac{1}{b-a} \int_{0}^{1} \frac{u^{a}-u^{b}}{1-u} d u $$ Use this result to evaluate the following sums: a. \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\) b. \(\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}\)

Short Answer

Expert verified
The sum \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1\), and the sum \(\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)} = \frac{1}{4}\).

Step by step solution

01

Applying the Laplace Transforms to prove the given Identity

We start with the Laplace Transform identity \[ L\{n^{s-1}\}=\frac{(s-1)!}{s^{s}} \]. Apply this to \[ \frac{1}{(n+a)(n+b)}= \frac{b - a}{b(a+b)} - \frac{1}{b(n+b)} + \frac{1}{a(n+a)}. \] Now apply the laplace transform to obtain \[ \frac{1}{b-a} \int_{0}^{1} \frac{u^{a}-u^{b}}{1-u} d u. \] This proves the given Identity.
02

Evaluating \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\)

Substitute \(a = 0, b = 1\) into the above derived identity, resulting to \[ \frac{1}{1-0} \int_{0}^{1} \frac{u^{0}-u^{1}}{1-u} d u = \int_{0}^{1} \frac{1-u}{1-u} d u = 1. \] Therefore, \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1 \).
03

Evaluating \(\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}\)

Substitute \(a = 2, b = 3\) into the derived identity, resulting to \[ \frac{1}{3-2} \int_{0}^{1} \frac{u^{2}-u^{3}}{1-u} d u = \int_{0}^{1} \frac{u^{2}-u^{3}}{1-u} d u = \frac{1}{4}. \] Therefore, \(\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)} = \frac{1}{4} \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use Laplace transforms to sum the following series or write as a single integral. a. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{1+2 n}\) b. \(\sum_{n=1}^{\infty} \frac{1}{n(n+3)} .\) c. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n(n+3)}\) d. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}-a^{2}}\) e. \(\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}-a^{2}}\) f. \(\sum_{n=1}^{\infty} \frac{1}{n} e^{-a n}\)

Find the inverse Laplace transform of the following functions using the properties of Laplace transforms and the table of Laplace transform pairs. a. \(F(s)=\frac{18}{s^{3}}+\frac{7}{s} .\) b. \(F(s)=\frac{1}{s-5}-\frac{2}{s^{2}+4}\). c. \(F(s)=\frac{s+1}{s^{2}+1} .\) d. \(F(s)=\frac{3}{s^{2}+2 s+2}\) e. \(F(s)=\frac{1}{(s-1)^{2}}\) f. \(F(s)=\frac{e^{-3 s}}{s^{2}-1} .\) g. \(F(s)=\frac{1}{s^{2}+4 s-5}\) h. \(F(s)=\frac{s+3}{s^{2}+8 s+17} .\)

For \(a>0\), find the Fourier transform, \(\hat{f}(k)\), of \(f(x)=e^{-a|x|}\).

Use the Convolution Theorem to compute the inverse transform of the following: a. \(F(s)=\frac{2}{s^{2}\left(s^{2}+1\right)} .\) b. \(F(s)=\frac{e^{-3 s}}{s^{2}}\) c. \(F(s)=\frac{1}{s\left(s^{2}+2 s+5\right)}\)

Consider the initial boundary value problem for the heat equation: $$ \begin{array}{rr} u_{t}=2 u_{x x}, & 00 \\ u(1, t)=0, & t>0 \end{array} $$ Use the finite transform method to solve this problem. Namely, assume that the solution takes the form \(u(x, t)=\sum_{n=1}^{\infty} b_{n}(t) \sin n \pi x\) and obtain an ordinary differential equation for \(b_{n}\) and solve for the \(b_{n}\) 's for each \(n\).

See all solutions

Recommended explanations on Combined Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free