Chapter 8: Problem 5
Find a Fourier series representation of the Dirac delta function, \(\delta(x)\), on \([-L, L]\)
Chapter 8: Problem 5
Find a Fourier series representation of the Dirac delta function, \(\delta(x)\), on \([-L, L]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the inverse Laplace transform of the following functions using the properties of Laplace transforms and the table of Laplace transform pairs. a. \(F(s)=\frac{18}{s^{3}}+\frac{7}{s} .\) b. \(F(s)=\frac{1}{s-5}-\frac{2}{s^{2}+4}\). c. \(F(s)=\frac{s+1}{s^{2}+1} .\) d. \(F(s)=\frac{3}{s^{2}+2 s+2}\) e. \(F(s)=\frac{1}{(s-1)^{2}}\) f. \(F(s)=\frac{e^{-3 s}}{s^{2}-1} .\) g. \(F(s)=\frac{1}{s^{2}+4 s-5}\) h. \(F(s)=\frac{s+3}{s^{2}+8 s+17} .\)
Use the result from Problem 6 plus properties of the Fourier transform to find the Fourier transform, of \(f(x)=x^{2} e^{-a|x|}\) for \(a>0\).
A damped harmonic oscillator is given by $$ f(t)=\left\\{\begin{array}{cl} A e^{-a t} e^{i \omega_{0} t}, & t \geq 0 \\ 0, & t<0 \end{array}\right. $$ a. Find \(\hat{f}(\omega)\) and b. the frequency distribution \(|\hat{f}(\omega)|^{2}\). c. Sketch the frequency distribution.
Given the following Laplace transforms \(F(s)\), find the function \(f(t)\). Note that in each case there are an infinite number of poles, resulting in an infinite series representation. a. \(F(s)=\frac{1}{s^{2}\left(1+e^{-5}\right)}\) b. \(F(s)=\frac{1}{s \sinh s}\). c. \(F(s)=\frac{\text { sinh } s}{s^{2} \cosh s}\)
For the case that a function has multiple roots, \(f\left(x_{i}\right)=0, i=1,2, \ldots\), it can be shown that $$ \delta(f(x))=\sum_{i=1}^{n} \frac{\delta\left(x-x_{i}\right)}{\left|f^{\prime}\left(x_{i}\right)\right|} $$ Use this result to evaluate \(\int_{-\infty}^{\infty} \delta\left(x^{2}-5 x-6\right)\left(3 x^{2}-7 x+2\right) d x\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.