Chapter 8: Problem 5
Find a Fourier series representation of the Dirac delta function, \(\delta(x)\), on \([-L, L]\)
Chapter 8: Problem 5
Find a Fourier series representation of the Dirac delta function, \(\delta(x)\), on \([-L, L]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the inverse Laplace transform of the following functions using the properties of Laplace transforms and the table of Laplace transform pairs. a. \(F(s)=\frac{18}{s^{3}}+\frac{7}{s} .\) b. \(F(s)=\frac{1}{s-5}-\frac{2}{s^{2}+4}\). c. \(F(s)=\frac{s+1}{s^{2}+1} .\) d. \(F(s)=\frac{3}{s^{2}+2 s+2}\) e. \(F(s)=\frac{1}{(s-1)^{2}}\) f. \(F(s)=\frac{e^{-3 s}}{s^{2}-1} .\) g. \(F(s)=\frac{1}{s^{2}+4 s-5}\) h. \(F(s)=\frac{s+3}{s^{2}+8 s+17} .\)
Find the Laplace transform of the following functions: a. \(f(t)=9 t^{2}-7\) b. \(f(t)=e^{5 t-3}\). c. \(f(t)=\cos 7 t\). d. \(f(t)=e^{4 l} \sin 2 t\). e. \(f(t)=e^{2 t}(t+\cosh t)\). f. \(f(t)=t^{2} H(t-1)\). g. \(f(t)=\left\\{\begin{array}{cl}\sin t, & t<4 \pi \\ \sin t+\cos t, & t>4 \pi\end{array}\right.\) h. \(f(t)=\int_{0}^{t}(t-u)^{2} \sin u d u\). i. \(f(t)=(t+5)^{2}+t e^{2 t} \cos 3 t\) and write the answer in the simplest form.
Use the result from Problem 6 plus properties of the Fourier transform to find the Fourier transform, of \(f(x)=x^{2} e^{-a|x|}\) for \(a>0\).
Show that the convolution operation is associative: \((f *(g * h))(t)=\) \(((f * g) * h)(t)\)
In this problem, you will directly compute the convolution of two Gaussian functions in two steps. a. Use completing the square to evaluate $$ \int_{-\infty}^{\infty} e^{-a t^{2}+\beta t} d t $$ b. Use the result from part a to directly compute the convolution in Example 8.16: $$ (f * g)(x)=e^{-b x^{2}} \int_{-\infty}^{\infty} e^{-(a+b) t^{2}+2 b x t} d t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.