Chapter 8: Problem 6
For \(a>0\), find the Fourier transform, \(\hat{f}(k)\), of \(f(x)=e^{-a|x|}\).
Chapter 8: Problem 6
For \(a>0\), find the Fourier transform, \(\hat{f}(k)\), of \(f(x)=e^{-a|x|}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeCompute the convolution \((f * g)(t)\) (in the Laplace transform sense) and its corresponding Laplace transform \(\mathcal{L}[f * g]\) for the following functions: a. \(f(t)=t^{2}, g(t)=t^{3}\). b. \(f(t)=t^{2}, g(t)=\cos 2 t\). c. \(f(t)=3 t^{2}-2 t+1, g(t)=e^{-3 t}\). d. \(f(t)=\delta\left(t-\frac{\pi}{4}\right), g(t)=\sin 5 t\)
In this problem you will show that the sequence of functions $$ f_{n}(x)=\frac{n}{\pi}\left(\frac{1}{1+n^{2} x^{2}}\right) $$ approaches \(\delta(x)\) as \(n \rightarrow \infty\). Use the following to support your argument: a. Show that \(\lim _{n \rightarrow \infty} f_{n}(x)=0\) for \(x \neq 0\). b. Show that the area under each function is one.
Find the inverse Laplace transform of the following functions using the properties of Laplace transforms and the table of Laplace transform pairs. a. \(F(s)=\frac{18}{s^{3}}+\frac{7}{s} .\) b. \(F(s)=\frac{1}{s-5}-\frac{2}{s^{2}+4}\). c. \(F(s)=\frac{s+1}{s^{2}+1} .\) d. \(F(s)=\frac{3}{s^{2}+2 s+2}\) e. \(F(s)=\frac{1}{(s-1)^{2}}\) f. \(F(s)=\frac{e^{-3 s}}{s^{2}-1} .\) g. \(F(s)=\frac{1}{s^{2}+4 s-5}\) h. \(F(s)=\frac{s+3}{s^{2}+8 s+17} .\)
Use the result from Problem 6 plus properties of the Fourier transform to find the Fourier transform, of \(f(x)=x^{2} e^{-a|x|}\) for \(a>0\).
Find the inverse Laplace transform in two different ways: (i) Use tables. (ii) Use the Bromwich Integral. a. \(F(s)=\frac{1}{s^{3}(s+4)^{2}}\) b. \(F(s)=\frac{1}{s^{2}-4 s-5}\) c. \(F(s)=\frac{s+3}{s^{2}+8 s+17}\) d. \(F(s)=\frac{s+1}{(s-2)^{2}(s+4)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.