Chapter 8: Problem 8
Find the Fourier transform, \(\hat{f}(k)\), of \(f(x)=e^{-2 x^{2}+x}\).
Chapter 8: Problem 8
Find the Fourier transform, \(\hat{f}(k)\), of \(f(x)=e^{-2 x^{2}+x}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeIn this problem you will show that the sequence of functions $$ f_{n}(x)=\frac{n}{\pi}\left(\frac{1}{1+n^{2} x^{2}}\right) $$ approaches \(\delta(x)\) as \(n \rightarrow \infty\). Use the following to support your argument: a. Show that \(\lim _{n \rightarrow \infty} f_{n}(x)=0\) for \(x \neq 0\). b. Show that the area under each function is one.
Find the inverse Laplace transform in two different ways: (i) Use tables. (ii) Use the Bromwich Integral. a. \(F(s)=\frac{1}{s^{3}(s+4)^{2}}\) b. \(F(s)=\frac{1}{s^{2}-4 s-5}\) c. \(F(s)=\frac{s+3}{s^{2}+8 s+17}\) d. \(F(s)=\frac{s+1}{(s-2)^{2}(s+4)}\)
Find the Laplace transform of the following functions: a. \(f(t)=9 t^{2}-7\) b. \(f(t)=e^{5 t-3}\). c. \(f(t)=\cos 7 t\). d. \(f(t)=e^{4 l} \sin 2 t\). e. \(f(t)=e^{2 t}(t+\cosh t)\). f. \(f(t)=t^{2} H(t-1)\). g. \(f(t)=\left\\{\begin{array}{cl}\sin t, & t<4 \pi \\ \sin t+\cos t, & t>4 \pi\end{array}\right.\) h. \(f(t)=\int_{0}^{t}(t-u)^{2} \sin u d u\). i. \(f(t)=(t+5)^{2}+t e^{2 t} \cos 3 t\) and write the answer in the simplest form.
Compute the convolution \((f * g)(t)\) (in the Laplace transform sense) and its corresponding Laplace transform \(\mathcal{L}[f * g]\) for the following functions: a. \(f(t)=t^{2}, g(t)=t^{3}\). b. \(f(t)=t^{2}, g(t)=\cos 2 t\). c. \(f(t)=3 t^{2}-2 t+1, g(t)=e^{-3 t}\). d. \(f(t)=\delta\left(t-\frac{\pi}{4}\right), g(t)=\sin 5 t\)
Use Laplace transforms to convert the following system of differential equations into an algebraic system, and find the solution of the differential equations. $$ \begin{array}{ll} x^{\prime \prime}=3 x-6 y, & x(0)=1, & x^{\prime}(0)=0 \\ y^{\prime \prime}=x+y, & y(0)=0, & y^{\prime}(0)=0 \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.