Chapter 8: Problem 8
Find the Fourier transform, \(\hat{f}(k)\), of \(f(x)=e^{-2 x^{2}+x}\).
Chapter 8: Problem 8
Find the Fourier transform, \(\hat{f}(k)\), of \(f(x)=e^{-2 x^{2}+x}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeA damped harmonic oscillator is given by $$ f(t)=\left\\{\begin{array}{cl} A e^{-a t} e^{i \omega_{0} t}, & t \geq 0 \\ 0, & t<0 \end{array}\right. $$ a. Find \(\hat{f}(\omega)\) and b. the frequency distribution \(|\hat{f}(\omega)|^{2}\). c. Sketch the frequency distribution.
Use Laplace transforms to sum the following series or write as a single integral. a. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{1+2 n}\) b. \(\sum_{n=1}^{\infty} \frac{1}{n(n+3)} .\) c. \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n(n+3)}\) d. \(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}-a^{2}}\) e. \(\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}-a^{2}}\) f. \(\sum_{n=1}^{\infty} \frac{1}{n} e^{-a n}\)
Show that the convolution operation is associative: \((f *(g * h))(t)=\) \(((f * g) * h)(t)\)
Consider the initial boundary value problem for the heat equation:
$$
\begin{array}{rr}
u_{t}=2 u_{x x}, & 0
For \(a>0\), find the Fourier transform, \(\hat{f}(k)\), of \(f(x)=e^{-a|x|}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.