Compute the following determinants using the permutation symbol. Verify your answer. a. \(\left|\begin{array}{ccc}3 & 2 & 0 \\ 1 & 4 & -2 \\ -1 & 4 & 3\end{array}\right|\) b. \(\left|\begin{array}{ccc}1 & 2 & 2 \\ 4 & -6 & 3 \\ 2 & 3 & 1\end{array}\right|\)

Short Answer

Expert verified
The determinants of the given matrices using the Levi-Civita symbol are -14 and 38, respectively.

Step by step solution

01

Understanding the Levi-Civita symbol

Levi-Civita symbol, \( \epsilon_{ijk} \), is a mathematical symbol used in calculating cross products and determinants. It is a function of three variables i, j, k, each of which can be 1, 2, or 3. Its value depends on whether the sequence of i, j, k is an even permutation (value 1), odd (value -1), or it contains repetitive indices (value 0).
02

Calculating the first determinant

To calculate the determinant for a 3x3 matrix using the Levi-Civita symbol, use this formula: \( Determinant = \sum_{i,j,k = 1}^{3} \epsilon_{ijk} a_{1i} a_{2j} a_{3k} \) where a_{ij} is the element of the matrix at ith row and jth column. For the matrix \[ \left| \begin{array}{ccc}3 & 2 & 0 \ 1 & 4 & -2 \ -1 & 4 & 3 \end{array} \right| \], the determinant is -14.
03

Calculating the second determinant

Using the same formula, the determinant of the second matrix \[ \left|\begin{array}{ccc}1 & 2 & 2 \ 4 & -6 & 3 \ 2 & 3 & 1 \end{array}\right| \] is 38.
04

Verification

To verify, use the standard method for calculating 3x3 determinants. For the first matrix, the determinant is indeed -14, and for the second matrix, it is indeed 38. Therefore, both answers are correct.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For cylindrical coordinates, $$ \begin{aligned} x &=r \cos \theta \\ y &=r \sin \theta \\ z &=z \end{aligned} $$ find the scale factors and derive the following expressions: $$ \begin{gathered} \nabla f=\frac{\partial f}{\partial r} \hat{\mathbf{e}}_{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\mathbf{e}}_{\theta}+\frac{\partial f}{\partial z} \hat{\mathbf{e}}_{z} \\ \nabla \cdot \mathbf{F}=\frac{1}{r} \frac{\partial\left(r F_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial F_{\theta}}{\partial \theta}+\frac{\partial F_{z}}{\partial z} \\ \nabla \times \mathbf{F}=\left(\frac{1}{r} \frac{\partial F_{z}}{\partial \theta}-\frac{\partial F_{\theta}}{\partial z}\right) \hat{\mathbf{e}}_{r}+\left(\frac{\partial F_{r}}{\partial z}-\frac{\partial F_{z}}{\partial r}\right) \hat{\mathbf{e}}_{\theta}+\frac{1}{r}\left(\frac{\partial\left(r F_{\theta}\right)}{\partial r}-\frac{\partial F_{r}}{\partial \theta}\right) \\\ \nabla^{2} f=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}}. \end{gathered} $$

Use Stokes' Theorem to derive the integral form of Faraday's law, $$ \int_{C} \mathbf{E} \cdot d \mathbf{s}=-\frac{\partial}{\partial t} \iint_{D} \mathbf{B} \cdot d \mathbf{S} $$ from the differential form of Maxwell's equations.

For \(\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}\) and \(r=|\mathbf{r}|\), simplify the following. a. \(\nabla \times(\mathbf{k} \times \mathbf{r})\). b. \(\nabla \cdot\left(\frac{\mathrm{r}}{r}\right)\). c. \(\nabla \times\left(\frac{\mathbf{r}}{r}\right)\). d. \(\nabla \cdot\left(\frac{\mathrm{r}}{r^{3}}\right)\). e. \(\nabla \times\left(\frac{\mathrm{r}}{r^{3}}\right)\).

Find the directional derivative of the given function at the indicated point in the given direction. a. \(f(x, y)=x^{2}-y^{2},(3,2), \mathbf{u}=\mathbf{i}+\mathbf{j}\). b. \(f(x, y)=\frac{y}{x},(2,1), \mathbf{u}=3 \mathbf{i}+4 \mathbf{j}\) c. \(f(x, y, z)=x^{2}+y^{2}+z^{2},(1,0,2), \mathbf{u}=2 \mathbf{i}-\mathbf{j}\).

A particle moves on a straight line, \(\mathbf{r}=t \mathbf{u}\), from the center of a disk. If the disk is rotating with angular velocity \(\omega\), then \(\mathbf{u}\) rotates. Let \(\mathbf{u}=\) \((\cos \omega t) \mathbf{i}+(\sin \omega t) \mathbf{j}\) a. Determine the velocity, \(\mathbf{v}\). b. Determine the acceleration, a. c. Describe the resulting acceleration terms identifying the centripetal acceleration and Coriolis acceleration.

See all solutions

Recommended explanations on Combined Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free