Chapter 9: Problem 23
Prove that the magnetic flux density, B, satisfies the wave equation.
Chapter 9: Problem 23
Prove that the magnetic flux density, B, satisfies the wave equation.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe line element in terms of the metric tensor, \(g_{\alpha \beta}\) is given by $$ d s^{2}=g_{\alpha \beta} d x^{\alpha} d x^{\beta}. $$ Show that the transformed metric for the transformation \(x^{\prime \alpha}=x^{\prime \alpha}\left(x^{\beta}\right)\) is given by $$ g_{\gamma \delta}^{\prime}=g_{\alpha \beta} \frac{\partial x^{\alpha}}{\partial x^{\prime} \gamma} \frac{\partial x^{\beta}}{\partial x^{\prime \delta}} $$
Let \(T^{\alpha}\) be a contravariant vector and \(S_{\alpha}\) be a covariant vector. a. Show that \(R_{\beta}=g_{\alpha \beta} T^{\alpha}\) is a covariant vector. b. Show that \(R^{\beta}=g^{\alpha \beta} S_{\alpha}\) is a contravariant vector.
For \(\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}\) and \(r=|\mathbf{r}|\), simplify the following. a. \(\nabla \times(\mathbf{k} \times \mathbf{r})\). b. \(\nabla \cdot\left(\frac{\mathrm{r}}{r}\right)\). c. \(\nabla \times\left(\frac{\mathbf{r}}{r}\right)\). d. \(\nabla \cdot\left(\frac{\mathrm{r}}{r^{3}}\right)\). e. \(\nabla \times\left(\frac{\mathrm{r}}{r^{3}}\right)\).
Prove the following vector identities: a. \((\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})\) b. \((\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{b} \times \mathbf{d}) \mathbf{c}-(\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}) \mathbf{d}\).
A particle moves on a straight line, \(\mathbf{r}=t \mathbf{u}\), from the center of a disk. If the disk is rotating with angular velocity \(\omega\), then \(\mathbf{u}\) rotates. Let \(\mathbf{u}=\) \((\cos \omega t) \mathbf{i}+(\sin \omega t) \mathbf{j}\) a. Determine the velocity, \(\mathbf{v}\). b. Determine the acceleration, a. c. Describe the resulting acceleration terms identifying the centripetal acceleration and Coriolis acceleration.
What do you think about this solution?
We value your feedback to improve our textbook solutions.