Chapter 9: Problem 23
Prove that the magnetic flux density, B, satisfies the wave equation.
Chapter 9: Problem 23
Prove that the magnetic flux density, B, satisfies the wave equation.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse Stokes' Theorem to derive the integral form of Faraday's law, $$ \int_{C} \mathbf{E} \cdot d \mathbf{s}=-\frac{\partial}{\partial t} \iint_{D} \mathbf{B} \cdot d \mathbf{S} $$ from the differential form of Maxwell's equations.
Let \(S\) be a closed surface and \(V\) the enclosed volume. Prove Green's first and second identities, respectively. a. \(\int_{S} \phi \nabla \psi \cdot \mathbf{n} d S=\int_{V}\left(\phi \nabla^{2} \psi+\nabla \phi \cdot \nabla \psi\right) d V\). b. \(\int_{S}[\phi \nabla \psi-\psi \nabla \phi] \cdot \mathbf{n} d S=\int_{V}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d V\).
Use Stokes' Theorem to evaluate the integral $$ \int_{C}-y^{3} d x+x^{3} d y-z^{3} d z $$ for \(C\) the (positively oriented) curve of intersection between the cylinder \(x^{2}+y^{2}=1\) and the plane \(x+y+z=1\)
Compute the following determinants using the permutation symbol. Verify your answer. a. \(\left|\begin{array}{ccc}3 & 2 & 0 \\ 1 & 4 & -2 \\ -1 & 4 & 3\end{array}\right|\) b. \(\left|\begin{array}{ccc}1 & 2 & 2 \\ 4 & -6 & 3 \\ 2 & 3 & 1\end{array}\right|\)
Compute the gradient of the following: a. \(f(x, y)=x^{2}-y^{2}\) b. \(f(x, y, z)=y z+x y+x z\). c. \(f(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)\). d. \(f(x, y, z)=2 y^{x} \cos z-5 \sin z \cos y\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.