Chapter 9: Problem 29
Use Stokes' Theorem to evaluate the integral $$ \int_{C}-y^{3} d x+x^{3} d y-z^{3} d z $$ for \(C\) the (positively oriented) curve of intersection between the cylinder \(x^{2}+y^{2}=1\) and the plane \(x+y+z=1\)
Chapter 9: Problem 29
Use Stokes' Theorem to evaluate the integral $$ \int_{C}-y^{3} d x+x^{3} d y-z^{3} d z $$ for \(C\) the (positively oriented) curve of intersection between the cylinder \(x^{2}+y^{2}=1\) and the plane \(x+y+z=1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFor cylindrical coordinates, $$ \begin{aligned} x &=r \cos \theta \\ y &=r \sin \theta \\ z &=z \end{aligned} $$ find the scale factors and derive the following expressions: $$ \begin{gathered} \nabla f=\frac{\partial f}{\partial r} \hat{\mathbf{e}}_{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\mathbf{e}}_{\theta}+\frac{\partial f}{\partial z} \hat{\mathbf{e}}_{z} \\ \nabla \cdot \mathbf{F}=\frac{1}{r} \frac{\partial\left(r F_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial F_{\theta}}{\partial \theta}+\frac{\partial F_{z}}{\partial z} \\ \nabla \times \mathbf{F}=\left(\frac{1}{r} \frac{\partial F_{z}}{\partial \theta}-\frac{\partial F_{\theta}}{\partial z}\right) \hat{\mathbf{e}}_{r}+\left(\frac{\partial F_{r}}{\partial z}-\frac{\partial F_{z}}{\partial r}\right) \hat{\mathbf{e}}_{\theta}+\frac{1}{r}\left(\frac{\partial\left(r F_{\theta}\right)}{\partial r}-\frac{\partial F_{r}}{\partial \theta}\right) \\\ \nabla^{2} f=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{\partial^{2} f}{\partial z^{2}}. \end{gathered} $$
Let \(C\) be a closed curve and \(D\) the enclosed region. Prove the identity $$ \int_{C} \phi \nabla \phi \cdot \mathbf{n} d s=\int_{D}\left(\phi \nabla^{2} \phi+\nabla \phi \cdot \nabla \phi\right) d A. $$
Prove the following vector identities: a. \((\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})\) b. \((\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{b} \times \mathbf{d}) \mathbf{c}-(\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}) \mathbf{d}\).
Consider the integral \(\int_{C} y^{2} d x-2 x^{2} d y\). Evaluate this integral for the following curves: a. \(C\) is a straight line from \((0,2)\) to \((1,1)\). b. \(C\) is the parabolic curve \(y=x^{2}\) from \((0,0)\) to \((2,4)\). c. \(C\) is the circular path from \((1,0)\) to \((0,1)\) in a clockwise direction.
For the given vector field, find the divergence and curl of the field. a. \(\mathbf{F}=x \mathbf{i}+y \mathbf{j}\) b. \(\mathbf{F}=\frac{y}{r} \mathbf{i}-\frac{x}{r} \mathbf{j}\), for \(r=\sqrt{x^{2}+y^{2}}\). c. \(\mathbf{F}=x^{2} y \mathbf{i}+z \mathbf{j}+x y z \mathbf{k} .\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.