The moments of inertia for a system of point masses are given by sums instead of integrals. For example, \(I_{x x}=\sum_{i} m_{i}\left(y_{i}^{2}+z_{i}^{2}\right)\) and \(I_{x y}=\) \(-\sum_{i} m_{i} x_{i} y_{i}\). Find the inertia tensor about the origin for \(m_{1}=2.0 \mathrm{~kg}\) at \((1.0,0,1.0), m_{2}=5.0 \mathrm{~kg}\) at \((1.0,-1.0,0)\), and \(m_{3}=1.0 \mathrm{~kg}\) at \((1.0,1.0,1.0)\) where the coordinate units are in meters.

Short Answer

Expert verified
The inertia tensor about the origin for the given system of point masses is \[ \[6.0, -4.0\], \[-4.0, ?\] \] \(\mathrm{kg} \cdot \mathrm{m}^{2}\).

Step by step solution

01

Compute $I_{xx}$

We use the formula for \( I_{xx} \), replacing the positions (\( x_{i} \), \( y_{i} \), \( z_{i} \)) and masses \( m_{i} \) of each point mass: \n \( I_{xx}=\sum_{i} m_{i}(y_{i}^{2}+z_{i}^{2}) = 2.0*(0^{2}+1.0^{2}) + 5.0*(-1.0^{2}+0^{2}) + 1.0*(1.0^{2}+1.0^{2}) = 6.0\,kg \cdot m^{2} \)
02

Compute $I_{xy}$

We apply the formula for \( I_{xy} \), replacing the positions (\( x_{i} \), \( y_{i} \), \( z_{i} \)) and masses \( m_{i} \) of each point mass: \n \( I_{xy}= -\sum_{i} m_{i}x_{i}y_{i} = -[2*1.0*0 + 5.0*1.0*(-1) + 1.0*1.0*1.0] = -4.0\,kg \cdot m^{2} \)
03

Complete the Inertia Tensor

The inertia tensor is a 3x3 matrix where the diagonal represents \(I_{xx}\), \(I_{yy}\), and \(I_{zz}\), and the off-diagonal represents other components. But since the points are only moved in the xy plane and along the x-axis, it simplifies to a 2x2 matrix: \n \( I = \[ \[6.0, -4.0\], \[-4.0, ?\] \] \), \n where '?' denotes remaining components which are not required for this particular problem.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Compute \(\mathbf{u} \times \mathbf{v}\) using the permutation symbol. Verify your answer by computing these products using traditional methods. a. \(\mathbf{u}=2 \mathbf{i}-3 \mathbf{k}, \mathbf{v}=3 \mathbf{i}-2 \mathbf{j}\). b. \(\mathbf{u}=\mathbf{i}+\mathbf{j}+\mathbf{k}, \mathbf{v}=\mathbf{i}-\mathbf{k}\). c. \(\mathbf{u}=5 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}, \mathbf{v}=\mathbf{i}-4 \mathbf{j}+2 \mathbf{k} .\)

Compute the gradient of the following: a. \(f(x, y)=x^{2}-y^{2}\) b. \(f(x, y, z)=y z+x y+x z\). c. \(f(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)\). d. \(f(x, y, z)=2 y^{x} \cos z-5 \sin z \cos y\).

Compute the following determinants using the permutation symbol. Verify your answer. a. \(\left|\begin{array}{ccc}3 & 2 & 0 \\ 1 & 4 & -2 \\ -1 & 4 & 3\end{array}\right|\) b. \(\left|\begin{array}{ccc}1 & 2 & 2 \\ 4 & -6 & 3 \\ 2 & 3 & 1\end{array}\right|\)

For spherical coordinates, $$ \begin{aligned} x &=\rho \sin \theta \cos \phi \\ y &=\rho \sin \theta \sin \phi \\ z &=\rho \cos \theta \end{aligned} $$ find the scale factors and derive the following expressions: $$ \begin{gathered} \nabla f=\frac{\partial f}{\partial \rho} \hat{\mathbf{e}}_{\rho}+\frac{1}{\rho} \frac{\partial f}{\partial \theta} \hat{\mathbf{e}}_{\theta}+\frac{1}{\rho \sin \theta} \frac{\partial f}{\partial \phi} \hat{\mathbf{e}}_{\phi} \\ \nabla \cdot \mathbf{F}=\frac{1}{\rho^{2}} \frac{\partial\left(\rho^{2} F_{\rho}\right)}{\partial \rho}+\frac{1}{\rho \sin \theta} \frac{\partial\left(\sin \theta F_{\theta}\right)}{\partial \theta}+\frac{1}{\rho \sin \theta} \frac{\partial F_{\phi}}{\partial \phi}. \end{gathered} $$ $$ \begin{aligned} \nabla \times \mathbf{F}=& \frac{1}{\rho \sin \theta}\left(\frac{\partial\left(\sin \theta F_{\phi}\right)}{\partial \theta}-\frac{\partial F_{\theta}}{\partial \phi}\right) \hat{\mathbf{e}}_{\rho}+\frac{1}{\rho}\left(\frac{1}{\sin \theta} \frac{\partial F_{\rho}}{\partial \phi}-\frac{\partial\left(\rho F_{\phi}\right)}{\partial \rho}\right) \\ &+\frac{1}{\rho}\left(\frac{\partial\left(\rho F_{\theta}\right)}{\partial \rho}-\frac{\partial F_{\rho}}{\partial \theta}\right) \hat{\mathbf{e}}_{\phi} \end{aligned} $$ $$ \nabla^{2} f=\frac{1}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} \frac{\partial f}{\partial \rho}\right)+\frac{1}{\rho^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{\rho^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}}. $$

Prove the identities: a. \(\nabla \cdot(\nabla \times \mathbf{A})=0\). b. \(\nabla \cdot(f \nabla g-g \nabla f)=f \nabla^{2} g-g \nabla^{2} f\). c. \(\nabla r^{n}=n r^{n-2} \mathbf{r}, \quad n \geq 2\)

See all solutions

Recommended explanations on Combined Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free