Evaluate Fourier transforms of the following distributional functions: (a) \(\delta(x-a)\). (b) \(\delta^{\prime}(x-a)\). (c) \(\delta^{(n)}(x-a)\). (d) \(\delta\left(x^{2}-a^{2}\right)\) (c) \(\delta^{\prime}\left(x^{2}-a^{2}\right)\)

Short Answer

Expert verified
(a) \( e^{-j\omega a} \), (b) \( j\omega e^{-j\omega a} \), (c) \((j\omega)^n e^{-j\omega a} \), (d) undefined, (e) undefined.

Step by step solution

01

Fourier Transform of Delta function

Fourier transform \(F(\omega)\) of a function f(t) is given by \(F(\omega) = \int_{-\infty}^{+\infty}f(t) e^{-j\omega t} dt \). If function f(t) = \(\delta (t-a)\) ,we get \(F(\omega) = e^{-j\omega a} \) .
02

Fourier Transform of Delta function derivatives

The Fourier Transform of the nth derivative of the delta function \(\delta^{(n)}(t-a)\) is given by \( (j\omega)^n e^{-j\omega a} \). This is obtained by differentiating the Fourier transform of the delta function n times.
03

Fourier Transform of Zero function delta

The Fourier transform of a zero function delta, \(\delta(x^2-a^2)\) is zero as it's undefined. Delta function is only defined for linear functions, not for quadratic or higher degree functions.
04

Fourier Transform of Zero function delta derivative

The derivative of a zero function delta, \(\delta'(x^2-a^2)\) is also not defined, hence its Fourier Transform is also zero.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show the identities $$ \frac{d}{d x}(\delta(f(x)))=f^{\prime}(x) \delta^{\prime}(f(x)) $$ and $$ \delta(f(x))+f(x) \delta^{\prime}(f(x))=0 $$ Hence show that \(\phi(x, y)=\delta\left(x^{2}-y^{2}\right)\) is a solution of the partial differcntial equation $$ x \frac{\partial \phi}{\partial x}+y \frac{\partial \phi}{\partial y}+2 \phi(x, y)=0 $$

Show that the Fourier transform of the distribution $$ \delta_{0}+\delta_{d i}+\delta_{2 a}+\cdots+\delta_{(2 n-1)} $$ is a distribution with density $$ \frac{1}{\sqrt{2 \pi}} \frac{\sin (n a y)}{\sin \left(\frac{1}{2} a y\right)} \mathrm{e}^{-\left(n-\frac{1}{2}\right)+2 y} $$ Show that $$ \mathcal{F}^{-1}\left(f(y) e^{2 b y}\right)=\left(\mathcal{F}^{-1} f\right)(x+b) $$ Hcnce find the inverse Fourier transform of $$ g(y)=\frac{\text { sin } n a y}{\sin \left(\frac{1}{2} a y\right)} $$

Show that the Green ' function for the one-dimensional diffusion equation, $$ \left.\frac{\partial^{2} G(x, t)}{\partial x^{2}}-\frac{1}{\kappa} \frac{\partial G(x, t)}{\partial t}=\varepsilon\left(x-x^{\prime}\right)\right\\}\left(t-t^{\prime}\right) $$ is given by $$ G\left(x-x^{\prime}, t-t^{\prime}\right)=-\theta\left(t-t^{\prime}\right) \sqrt{\frac{K}{4 \pi\left(t-t^{\prime}\right)}} e^{-\left(x-r^{\prime}\right)^{2} / 4(t-h)} $$ and write out the corresponding solution of the inhomogencous equation $$ \frac{\partial^{2} \psi(x, t)}{\partial x^{2}}-\frac{1}{x^{\prime}} \frac{\partial \psi(x, t)}{\partial t}=F(x, t) $$ Do the same for the two- and thrce-dimensional diffusion equations $$ \nabla^{2} G(x, t)-\frac{1}{\kappa} \frac{\partial G(x, t)}{\partial t}=\delta^{n}\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right) \quad(n=2,3) $$

Show the following identities: (a) \(\delta((x-a)(x-b))=\frac{1}{b-a}(\delta(x-a)+\delta(x-b))\) (b) \(\frac{\mathrm{d}}{\mathrm{dx}} \theta\left(x^{2}-1\right)=\delta(x-1)-\delta(x+1)=2 x \delta\left(x^{2}-1\right)\). (c) \(\frac{\mathrm{d}}{\mathrm{d} x} \delta\left(x^{2}-1\right)=\frac{1}{2}\left(\delta^{\prime}(x-1)+\delta^{\prime}(x+1)\right)\) (d) \(\delta^{\prime}\left(x^{2}-1\right)=\frac{1}{4}\left(\delta^{\prime}(x-1)-\delta^{\prime}(x+1)+\delta(x-1)+\delta(x+1)\right)\)

Find the Fourier transforms of the functions $$ f(x)= \begin{cases}1 & \text { if }-a \leq x \leq a \\ 0 & \text { otherwise }\end{cases} $$ and $$ g(x)= \begin{cases}1-\frac{\mid x}{2} & \text { if }-a \leq x \leq a \\ 0 & \text { otherwisc }\end{cases} $$

See all solutions

Recommended explanations on Combined Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free