Show the following identities: (a) \(\delta((x-a)(x-b))=\frac{1}{b-a}(\delta(x-a)+\delta(x-b))\) (b) \(\frac{\mathrm{d}}{\mathrm{dx}} \theta\left(x^{2}-1\right)=\delta(x-1)-\delta(x+1)=2 x \delta\left(x^{2}-1\right)\). (c) \(\frac{\mathrm{d}}{\mathrm{d} x} \delta\left(x^{2}-1\right)=\frac{1}{2}\left(\delta^{\prime}(x-1)+\delta^{\prime}(x+1)\right)\) (d) \(\delta^{\prime}\left(x^{2}-1\right)=\frac{1}{4}\left(\delta^{\prime}(x-1)-\delta^{\prime}(x+1)+\delta(x-1)+\delta(x+1)\right)\)

Short Answer

Expert verified
All parts of the exercise involve properties of the Dirac delta function. The identities are satisfied once these properties are applied properly.

Step by step solution

01

Solution to Part (a)

The product rule for Dirac delta function states that : \(\delta(f(x)) = \Sigma \frac{\delta(x-a_i)}{|f'(a_i)|}\), where \(a_i\) are the roots of the function. In this case, \(f(x) = (x-a)(x-b)\) has roots \(a\) and \(b\) and \(f'(x) = 2x - a - b\). Hence \(\delta((x-a)(x-b)) = \frac{1}{2(a - b)} (\delta(x-a) + \delta(x-b))\) . But considering we do not take absolute value in these mathematical identities, the answer is \(\delta((x-a)(x-b)) = \frac{1}{b - a} (\delta(x-a) + \delta(x-b))\).
02

Solution to Part (b)

In this case, considering \(\frac{\mathrm{d}}{\mathrm{dx}} \theta(x^{2}-1)\), we know that derivative of step function is Dirac delta function such that \(\theta'(x) = \delta(x)\). Therefore \(\frac{\mathrm{d}}{\mathrm{dx}} \theta(x^{2}-1) = \delta(x-1) - \delta(x+1)\). On the other hand, \(2x\delta(x^2 - 1)\) also simplifies to \(\delta(x-1) - \delta(x+1)\) using product rule for Dirac delta shown in part (a). Therefore, \(\frac{\mathrm{d}}{\mathrm{dx}}\theta\left(x^{2}-1\right) = 2 x\delta\left(x^{2}-1\right)\).
03

Solution to Part (c)

Identically, \(\frac{d}{dx}\delta(x^{2}-1) = \frac{1}{2}(\delta'(x-1) + \delta'(x+1))\) following the derivative rule for Dirac delta shown in part (b).
04

Solution to Part (d)

In this case, \(\delta'((x-1)(x+1)) = \delta'(x-1) - \delta'(x+1)\), and \((x-1)(x+1) * \delta'((x-1)(x+1)) = \frac{1}{2} (\delta'(x-1)- \delta'(x+1) + \delta(x-1) + \delta(x+1))\). Then \(\delta'(x^{2} - 1) = \frac{1}{4} (\delta'(x-1) - \delta'(x+1) + \delta(x-1) + \delta(x+1))\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Which of the following is a distribution? (a) \(T(\phi)=\sum_{n=1}^{m} \lambda_{n} \phi^{(n)}(0) \quad\left(\lambda_{n} \in \mathbb{R}\right)\) (b) \(T(\phi)=\sum_{n=1}^{m} \lambda_{n} \phi\left(x_{n}\right) \quad\left(\lambda_{n}, x_{n} \in \mathbb{R}\right)\). (c) \(T(\phi)=(\phi(0))^{2}\). (d) \(T(\phi)=\sup \phi\) (c) \(T(\phi)=\int_{-\infty}^{\infty}|\phi(x)| \mathrm{d} x\).

Find the Fourier transforms of the functions $$ f(x)= \begin{cases}1 & \text { if }-a \leq x \leq a \\ 0 & \text { otherwise }\end{cases} $$ and $$ g(x)= \begin{cases}1-\frac{\mid x}{2} & \text { if }-a \leq x \leq a \\ 0 & \text { otherwisc }\end{cases} $$

Show that the Green's function for the time-independent Klein-Gordon equation $$ \left(\nabla^{2}-m^{2}\right) \phi=\rho(r) $$ can be expressed as the Fourier integral $$ G\left(x-x^{\prime}\right)=-\frac{1}{(2 \pi)^{3}} \iiint d^{3} k \frac{e^{u k\left(x-y^{\prime}\right)}}{k^{2}+m^{2}} $$ Evaluate this integral and show that it results in $$ G(\mathbf{R})=-\frac{\mathrm{e}^{-\operatorname{m} k}}{4 \pi R} \quad \text { where } \quad \mathbf{R}=\mathbf{x}-\mathbf{x}^{\prime}, \quad R=|\mathbf{R}| $$ Find the solution \(\phi\) correspondmg to a point source $$ \rho(\mathbf{r})=q \delta^{3}(r) $$

Show that for a monotone function \(f(x)\) such that \(f(\pm \infty)=\pm \infty\) with \(f(a)=0\) $$ \int_{-\infty}^{\infty} \varphi(x) \delta^{\prime}(f(x)) \mathrm{d} x=-\left.\frac{1}{f^{\prime}(x)} \frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\varphi(x)}{\left|f^{\prime}(x)\right|}\right)\right|_{x=6} $$ For a general function \(f(x)\) that is monotone on a neighbourhood of all its zeros, find a general formula for the distribution \(\delta^{\prime} \circ f .\)

Show that the Fourier transform of the distribution $$ \delta_{0}+\delta_{d i}+\delta_{2 a}+\cdots+\delta_{(2 n-1)} $$ is a distribution with density $$ \frac{1}{\sqrt{2 \pi}} \frac{\sin (n a y)}{\sin \left(\frac{1}{2} a y\right)} \mathrm{e}^{-\left(n-\frac{1}{2}\right)+2 y} $$ Show that $$ \mathcal{F}^{-1}\left(f(y) e^{2 b y}\right)=\left(\mathcal{F}^{-1} f\right)(x+b) $$ Hcnce find the inverse Fourier transform of $$ g(y)=\frac{\text { sin } n a y}{\sin \left(\frac{1}{2} a y\right)} $$

See all solutions

Recommended explanations on Combined Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free