Chapter 13: Problem 16
For bounded linear operators \(A, B\) on a normed vector space \(V\) show that $$ \|\lambda A\|=|\lambda|\|A\|, \quad|A+B\|\leq\| A|+\|B\|, \quad \mid A B\|\leq\| A\|\| B \| $$ Hence show that \(|A|\) is a genuine norm on the set of bounded hnear operators on \(V\).