Chapter 15: Problem 2
On the \(n\)-sphere \(S^{n}\) find coordinates corresponding to (i) stereographic projection, (ii) spherical polars.
Chapter 15: Problem 2
On the \(n\)-sphere \(S^{n}\) find coordinates corresponding to (i) stereographic projection, (ii) spherical polars.
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that the Jacobi identity can be written $$ \mathcal{L}_{[x, r]} Z=\mathcal{L}_{x} \mathcal{L}_{r} Z-\mathcal{L}_{r} \mathcal{L}_{x} Z $$ and this property extends to all tensors \(T\) :
Show that the curve $$ 2 x^{2}+2 y^{2}+2 x y=1 $$ can be converted by a rotation of axcs to the standand form for an ellipse $$ x^{\prime 2}+3 y^{2}=1 $$ If \(x^{\prime}=\cos \psi, v^{\prime}=\frac{1}{\sqrt{3}} \sin \psi\) is used as a parametrization of this curve, show that $$ x=\frac{1}{\sqrt{2}}\left(\cos \psi+\frac{1}{\sqrt{3}} \sin \psi\right), \quad y=\frac{1}{\sqrt{2}}\left(-\cos \psi+\frac{1}{\sqrt{3}} \sin \psi\right) $$ Compute the components of the tangent vector $$ X=\frac{\mathrm{d} x}{\mathrm{~d} \psi} \partial_{x}+\frac{\mathrm{d} y}{\mathrm{~d} \psi} \partial_{y} $$ Show that \(X(f)=(2 / \sqrt{3})\left(x^{2}-y^{2}\right)\).
Is the map \(\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}\) given by \(x=\sin t, y=\sin 2 t\) (1) an immersion, (ii) an cmbedded submanifold?
Express the vector field \(\partial_{\varphi}\) in polar coordinates \((\theta, \phi)\) on the unit 2 -sphere in terms of stereographic coordinates \(X\) and \(Y\).
Show that the Lie derivative \(\mathcal{L}_{x}\) commules with all operations of contraction \(C_{t}^{y}\) on a tensor field \(T\), $$ \mathcal{L}_{X} C_{J} T=C_{j} \mathcal{L}_{\mathrm{Y}} T $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.