Find \(A B, B A, A+B, 5 A, 3 B, 5 A-3 B\). Observe that \(A B \neq B A\). Show
that \(\operatorname{det}(A B)=\operatorname{det}(B A)=(\operatorname{det}
A)(\operatorname{det} B)\), but that \(\operatorname{det}(A+B) \neq
\operatorname{det} A+\operatorname{det} B, \operatorname{det} 5 A \neq\) 5 det
\(A\), and det \(3 B \neq 3\) det \(B\). (In Problem 2, show that det \(3 B=9\) det
\(B\), and in Problem 3 . det \(3 B=27 \operatorname{det} B .)\)
$$
A=\left(\begin{array}{rr}
2 & -5 \\
-1 & 3
\end{array}\right), \quad B=\left(\begin{array}{rr}
-1 & 4 \\
0 & 2
\end{array}\right)
$$