Chapter 11: Problem 20
Show that for \(k=0\): $$u=F(\phi, 0)=\phi, \quad \operatorname{sn} u=\sin u, \quad \operatorname{cn} u=\cos u, \quad \operatorname{dn} u=1$$ and for \(k=1\): $$\begin{array}{c} u=F(\phi, 1)=\ln (\sec \phi+\tan \phi) \quad \text { or } \quad \phi=\operatorname{gd} u \quad \text { (Problem } 19) \\ \quad \operatorname{sn} u=\tanh u, \quad \operatorname{cn} u=\operatorname{dn} u=\operatorname{sech} u \end{array}$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.