If \(\mathbf{A}=2 \mathbf{i}-\mathbf{j}-\mathbf{k}, \mathbf{B}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}, \mathbf{C}=\mathbf{j}+\mathbf{k},\) find \((\mathbf{A} \cdot \mathbf{B}) \mathbf{C}, \mathbf{A}(\mathbf{B} \cdot \mathbf{C}),(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C},\) \(\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C}),(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}, \mathbf{A} \times(\mathbf{B} \times \mathbf{C})\).

Short Answer

Expert verified
1. \( 6\mathbf{j} + 6\mathbf{k}\), 2. \( -4\mathbf{i} + 2\mathbf{j} + 2\mathbf{k} \), 3. \( -10 \), 4. \( -8 \), 5. \( -2\mathbf{i} + \mathbf{j} - \mathbf{k} \), 6. \( 4\mathbf{i} - 12\mathbf{j} - 8\mathbf{k} \).

Step by step solution

01

- Calculate \(\mathbf{A} \cdot \mathbf{B}\)

Compute the dot product of \(\mathbf{A}\) and \(\mathbf{B}\) using the formula for the dot product: \( \mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z \). Substituting the values, \( (2)(2) + (-1)(-3) + (-1)(1) = 4 + 3 - 1 = 6 \).
02

- Multiply the result by \(\mathbf{C}\)

Now, calculate \( (\mathbf{A} \cdot \mathbf{B}) \mathbf{C} \). Substituting the value of the dot product: \( 6 \mathbf{C} = 6(\mathbf{j} + \mathbf{k}) = 6\mathbf{j} + 6\mathbf{k} \).
03

- Calculate \(\mathbf{B} \cdot \mathbf{C}\)

Compute the dot product of \(\mathbf{B}\) and \(\mathbf{C}\): \( \mathbf{B} \cdot \mathbf{C} = 2 \cdot 0 + (-3) \cdot 1 + 1 \cdot 1 = -2 \).
04

- Multiply the result by \(\mathbf{A}\)

Now, compute \( \mathbf{A}(\mathbf{B} \cdot \mathbf{C}) \). Substituting the value: \( \mathbf{A}(-2) = -2(2\mathbf{i} - \mathbf{j} - \mathbf{k}) = -4\mathbf{i} + 2\mathbf{j} + 2\mathbf{k} \).
05

- Calculate \(\mathbf{A} \times \mathbf{B}\)

Compute the cross product of \(\mathbf{A}\) and \(\mathbf{B}\) using the formula: \( \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 2 & -1 & -1 \ 2 & -3 & 1 \end{vmatrix} = \mathbf{i}((-1)(1) - (-1)(-1)) - \mathbf{j}((2)(1) - (-1)(2)) + \mathbf{k}((2)(-3) - (2)(-1)) = -\mathbf{i} - 6\mathbf{j} - 4\mathbf{k} \).
06

- Calculate \((\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}\)

Compute the dot product of \((\mathbf{A} \times \mathbf{B})\) and \(\mathbf{C}\): \( (-\mathbf{i} - 6\mathbf{j} - 4\mathbf{k}) \cdot (\mathbf{j} + \mathbf{k}) = -6 - 4 = -10 \).
07

- Calculate \(\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})\)

First, compute the cross product \( \mathbf{B} \times \mathbf{C} \): \( \mathbf{B} \times \mathbf{C} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 2 & -3 & 1 \ 0 & 1 & 1 \end{vmatrix} = \mathbf{i}((-3)(1) - (1)(1)) - \mathbf{j}((2)(1) - (0)(1)) + \mathbf{k}((2)(1) - (0)(-3)) = -4\mathbf{i} - 2\mathbf{j} + 2\mathbf{k} \). Then, compute the dot product \( \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) \): \( (2\mathbf{i} - \mathbf{j} - \mathbf{k}) \cdot (-4\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) = -8 + 2 - 2 = -8 \).
08

- Calculate \((\mathbf{A} \times \mathbf{B}) \times \mathbf{C}\)

Use the cross product results: \( (-\mathbf{i} - 6\mathbf{j} - 4\mathbf{k}) \times (\mathbf{j} + \mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ -1 & -6 & -4 \ 0 & 1 & 1 \end{vmatrix} = \mathbf{i}((-6)(1) - (-4)(1)) - \mathbf{j}((-1)(1) - (-4)(0)) + \mathbf{k}((-1)(1) - (-6)(0)) = -2\mathbf{i} + \mathbf{j} - \mathbf{k} \).
09

- Calculate \(\mathbf{A} \times (\mathbf{B} \times \mathbf{C})\)

Use the result from Step 7: \( \mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (2\mathbf{i} - \mathbf{j} - \mathbf{k}) \times (-4\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 2 & -1 & -1 \ -4 & -2 & 2 \end{vmatrix} = \mathbf{i}((-1)(2) - (-1)(-2)) - \mathbf{j}((2)(2) - (-1)(-4)) + \mathbf{k}((2)(-2) - (-1)(-4)) = 4\mathbf{i} - 12\mathbf{j} - 8\mathbf{k} \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Dot Product
In vector algebra, the dot product (or scalar product) of two vectors measures how much one vector goes in the direction of another. The formula for the dot product of \(\textbf{A} = A_x \textbf{i} + A_y \textbf{j} + A_z \textbf{k}\) and \(\textbf{B} = B_x \textbf{i} + B_y \textbf{j} + B_z \textbf{k}\) is: \(\textbf{A} \cdot \textbf{B} = A_x B_x + A_y B_y + A_z B_z\). This calculation works by multiplying corresponding components of the vectors and summing the results. For example, given \(\textbf{A} = 2\textbf{i} - \textbf{j} - \textbf{k}\) and \(\textbf{B} = 2\textbf{i} - 3\textbf{j} + \textbf{k}\), the dot product is computed as: \((2)(2) + (-1)(-3) + (-1)(1) = 4 + 3 - 1 = 6\). The result is a scalar value.
Cross Product
The cross product (or vector product) of two vectors results in a vector orthogonal (perpendicular) to both original vectors. The formula involves the determinant of a matrix: The cross product of \( \textbf{A} \times \textbf{B}\) is given by: \(\textbf{A} \times \textbf{B} = \begin{vmatrix} \textbf{i} & \textbf{j} & \textbf{k} \ A_x & A_y & A_z \ B_x & B_y & B_z \ \end{vmatrix}\). For our vectors, it means solving the determinant: \( \textbf{A} \times \textbf{B} = \begin{vmatrix} \textbf{i} & \textbf{j} & \textbf{k} \ 2 & -1 & -1 \ 2 & -3 & 1 \ \end{vmatrix} = \textbf{i}((-1)(1) - (-1)(-1)) - \textbf{j}((2)(1) - (-1)(2)) + \textbf{k}((2)(-3) - (2)(-1)) = -\textbf{i} - 6\textbf{j} - 4\textbf{k}\). The result is a new vector.
Vector Algebra
Vector algebra involves operations between vectors, including addition, subtraction, and multiplication (dot and cross products). Vectors can represent physical quantities such as force or velocity in physics. One can add vectors by summing their components: \( \textbf{A} + \textbf{B} = (A_x + B_x) \textbf{i} + (A_y + B_y) \textbf{j} + (A_z + B_z) \textbf{k}\). Subtraction follows a similar rule. Multiplication involves either the dot product, resulting in a scalar, or the cross product, which results in a vector. It is essential to understand these operations to solve many physics problems.
Vector Multiplication
Vector multiplication includes both dot and cross products. The dot product measures parallelism, while the cross product measures perpendicularity. For two vectors \( \textbf{A}\) and \( \textbf{B}\), the dot product is computed as: \(\textbf{A} \cdot \textbf{B} = A_x B_x + A_y B_y + A_z B_z\). The cross product is presented as: \( \textbf{A} \times \textbf{B} = \begin{vmatrix} \textbf{i} & \textbf{j} & \textbf{k} \ A_x & A_y & A_z \ B_x & B_y & B_z \ \end{vmatrix}\). Each product combines vector components in specific ways, either summing or forming new perpendicular vectors. Understanding these operations is crucial for analyzing physical phenomena.
Determinants in Vector Calculations
Determinants are essential in vector calculations, especially for cross products. A determinant simplifies complex vector operations, providing a straightforward method for computing results. For example, in the cross product \(\textbf{A} \times \textbf{B}\), the determinant is expressed as a matrix involving the unit vectors and the components of \(\textbf{A}\) and \(\textbf{B}\). Solving: \(\begin{vmatrix} \textbf{i} & \textbf{j} & \textbf{k} \ A_x & A_y & A_z \ B_x & B_y & B_z \ \end{vmatrix}\), a methodical approach simplifies calculating essential outcomes in physics problems. By understanding and using determinants, vector multiplications become more manageable and visually interpretable.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a uniform distribution of total mass \(m^{\prime}\) over a spherical shell of radius The potential energy \(\phi\) of a mass \(m\) in the gravitational field of the spherical shell is. $$\phi=\left\\{\begin{array}{ll}\text { const. } & \text { if } m \text { is inside the spherical shell, } \\ -\frac{C m^{\prime}}{r} & \text { if } m \text { is outside the spherical shell, where } r \text { is the distance } \\\ & \text { from the center of the sphere to } m, \text { and } C \text { is a constant. }\end{array}\right.$$ Assuming that the earth is a spherical ball of radius \(R\) and constant density, find the potential and the force on a mass \(m\) outside and inside the earth. Evaluate the constants in terms of the acceleration of gravity \(g,\) to get \(\mathbf{F}=-\frac{m g R^{2}}{r^{2}} \mathbf{e}_{r}, \quad\) and \(\quad \phi=-\frac{m g R^{2}}{r}\) \(m\) outside the earth; \(\mathbf{F}=-\frac{m g r}{R} \mathbf{e}_{r}, \quad\) and \(\quad \phi=\frac{m g}{2 R}\left(r^{2}-3 R^{2}\right)\) \(m\) inside the earth.

Evaluate each of the integrals as either a volume integral or a surface integral, whichever is easier. \(\iiint \nabla \cdot \mathbf{V} d \tau\) over the unit cube in the first octant, where $$\mathbf{V}=\left(x^{3}-x^{2}\right) y \mathbf{i}+\left(y^{3}-2 y^{2}+y\right) x \mathbf{j}+\left(z^{2}-1\right) \mathbf{k}$$.

\(\iint \mathbf{V} \cdot \mathbf{n} d \sigma\) over the entire surface of a cube in the first octant with edges of length 2 along the coordinate axes, where $$\mathbf{V}=\left(x^{2}-y^{2}\right) \mathbf{i}+3 y \mathbf{j}-2 x z \mathbf{k}$$

Find vector fields \(\mathbf{A}\) such that \(\mathbf{V}=\) curl \(\mathbf{A}\) for each given \(\mathbf{V}\) $$\mathbf{V}=\mathbf{i}\left(x^{2}-2 x z\right)+\mathbf{j}\left(y^{2}-2 x y\right)+\mathbf{k}\left(z^{2}-2 y z+x y\right)$$

For \(\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k},\) evaluate $$\nabla \times(\mathbf{k} \times \mathbf{r})$$

See all solutions

Recommended explanations on Combined Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free