You are going on a long trip. You start on the road at mile post 0. Along the way there aren hotels, at mile posts a1<a2<...<an , where eachai is measured from the starting point. The only places you are allowed to stop are at these hotels, but you can choose which of the hotels you stop at. You must stop at the final hotel (at distance an), which is your destination. You’d ideally like to travel miles a day, but this may not be possible (depending on the spacing of the hotels). If you travel x miles during a day, the penalty for that day is (200x)2. You want to plan your trip so as to minimize the total penalty- that is, the sum, over all travel days, of the daily penalties.Give an efficient algorithm that determines the optimal sequence of hotels at which to stop

Short Answer

Expert verified

Dynamic programming provides an efficient algorithm to determine the optimal sequence of hotels.

Step by step solution

01

Introduction to Dynamic programming

Dynamic programming helps to solve the problems that can be divided into subproblems and the solution of subproblems is used to calculate the optimal solution of the problem. Dynamic programming obtains both local and global optimal solution.

02

Determine the approach for efficient algorithm to find optimal sequence of hotels

The objective of the algorithm is to reduce the penalty.

Consider OPias the minimum total penalty to reach hotel i. Before reaching hotel i, keep the track of all hotelsj which can be used to stay. So, the minimum penalty to reach hoteli is the sum of minimum penalty to reach hotel ‘j’ and the cost of trip fromj toi is 200ajai2.

Thus, OPi=MINOPj+200ajai2.

The base value is OP0=0becausei=0 is the starting point of the trip. Call the function recursively within the loop to get minimum penalty to reach hotel n.

03

Determine the algorithm to find the optimal sequence of hotels

The algorithm to find the optimal sequence of hotels is as follows:

OP0=0fori=0 to n   OPi=MINOPj+200ajai2 for j=0 to i1return OPn

Thus, the algorithm returns the minimum penalty

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Reconstructing evolutionary trees by maximum parsimony. Suppose we manage to sequence a particular gene across a whole bunch of different species. For concreteness, say there are n species, and the sequences are strings of length k over alphabet={A,C,G,T}. How can we use this information to reconstruct the evolutionary history of these species?

Evolutionary history is commonly represented by a tree whose leaves are the different species, whose root is their common ancestor, and whose internal branches represent speciation events (that is, moments when a new species broke off from an existing one). Thus we need to find the following:

• An evolutionary tree with the given species at the leaves.

• For each internal node, a string of length K: the gene sequence for that particular ancestor.

For each possible tree T annotated with sequencess(u)kat each of its nodes , we can assign a score based on the principle of parsimony: fewer mutations are more likely.

localid="1659249441524" score(T)=(u.v)E(T)(numberofpositionsonwhichs(u)ands(v)disagree)

Finding the highest-score tree is a difficult problem. Here we will consider just a small part of it: suppose we know the structure of the tree, and we want to fill in the sequences s(u) of the internal nodes u. Here’s an example with k=4 and n=5:


(a) In this particular example, there are several maximum parsimony reconstructions of the internal node sequences. Find one of them.

(b) Give an efficient (in terms of n and k ) algorithm for this task. (Hint: Even though the sequences might be long, you can do just one position at a time.)

Alignment with gap penalties. The alignment algorithm of Exercise 6.26 helps to identify DNA sequences that are close to one another. The discrepancies between these closely matched sequences are often caused by errors in DNA replication. However, a closer look at the biological replication process reveals that the scoring function we considered earlier has a qualitative problem: nature often inserts or removes entire substrings of nucleotides (creating long gaps), rather than editing just one position at a time. Therefore, the penalty for a gap of length 10 should not be 10 times the penalty for a gap of length 1, but something significantly smaller.

Repeat Exercise 6.26, but this time use a modified scoring function in which the penalty for a gap of length k is c0 + c1k, where c0 and c1 are given constants (and c0 is larger than c1).

Sequence alignment. When a new gene is discovered, a standard approach to understanding its function is to look through a database of known genes and find close matches. The closeness of two genes is measured by the extent to which they are aligned. To formalize this, think of a gene as being a long string over an alphabet ={A,C,G,T}. Consider two genes (strings) x=ATGCCand y=TACGCA. An alignment of x and y is a way of matching up these two strings by writing them in columns, for instance:

A-T-GCCTA-CGC

Here the “_” indicates a “gap.” The characters of each string must appear in order, and each column must contain a character from at least one of the strings. The score of an alignment is specified by a scoring matrixδof size (+1)×(+1), where the extra row and column are to accommodate gaps. For instance the preceding alignment has the following score:

δ(-T)+δ(A,A)+δ(T,-)+δ(G,G)+δ(C,C)+δ(C,A)

Give a dynamic programming algorithm that takes as input two strings X[1K n] and Y {1K m} and a scoring matrix δand returns the highest-scoring alignment. The running time should be O(mn) .

Given an unlimited supply of coins of denominations, we wish to make change for a value ; that is, we wish to find a set of coins whose total value is . This might not be possible: for instance, if the denominations are and 10 then we can make change for 15 but not for 12. Give an dynamic-programming algorithm for the following problem.Input:,; .Question: Is it possible to make change for using coins of denominations ?

Here is yet another variation on the change-making problem (Exercise 6.17). Given an unlimited supply of coins of denominations x1,x2,x3.........xnwe wish to make change for a value v using at most k coins; that is, we wish to find a set ofkcoins whose total value is v. This might not be possible: for instance, if the denominations are 5 and 10 and k=6, then we can make change for 55 but not for 65. Give an efficient dynamic-programming algorithm for the following problem. Input: ; x1,x2,x3.........xn;k;v.Question: Is it possible to make change for v using at most k coins, of denominations x1,x2,x3.........xn?

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free