Counting heads. Given integersn and k, along with p1,...,pn[0,1], you want to determine the probability of obtaining exactly heads when biased coins are tossed independently at random, where pi is the probability that the ith coin comes up heads. Give an 0(n2)algorithm for this task. Assume you can multiply and add two numbers in [0,1]in 0(1)time.

Short Answer

Expert verified

It is given in that we have ‘n ’ biased coins that are tossed independently, i.e., no mutual exclusion and tossing of one coin have no effect on result of other coin.

Also, ithcoin will produce head, with probability pi.

Step by step solution

01

Subproblem

Let us consider that n-1 coins are already tossed together and nth coin is toss separately.

Now let P1...n,k is the probability of getting exactly ‘k’ heads when ‘n ’ coins are tossed.

Now applying our consideration, we will define a storing table n*kand fill the various probability.

Thus there are two ways of getting exactly ‘k ’ heads with ‘n ’ coins:

  • If n-1coins have kheads and nth coin show tail.
  • If n-1coins have k-1heads and nth coin is head.

According to the above two cases, we can define our subproblem as:

P(n,k)=P(n-1,k)*(1-pn)+P(n-1,k-1)*p[n]

02

Analysing the recursion equation

If we are tossing first icoins, where jis the number of heads,

And L(i,j) as total probability of getting head,

localid="1657267432115" L(i,j)={Pi*Li-1,j-1+1-pi*Li-1,j;forj=0,1..i0;forj0

On solving this recursion equation, the time complexity will be 0nk.

This is because our algorithm will run for ‘n’ coins but will stop if it gets k heads. So we will be using first loop for to toss each coin which would be ‘n’ and then second loop will check for head in the tossed coin.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Time and space complexity of dynamic programming. Our dynamic programming algorithm for computing the edit distance between strings of length m and n creates a table of size n×mand therefore needs O (mn) time and space. In practice, it will run out of space long before it runs out of time. How can this space requirement be reduced?

  1. Show that if we just want to compute the value of the edit distance (rather than the optimal sequence of edits), then only O(n) space is needed, because only a small portion of the table needs to be maintained at any given time.
  2. Now suppose that we also want the optimal sequence of edits. As we saw earlier, this problem can be recast in terms of a corresponding grid-shaped dag, in which the goal is to find the optimal path from node (0,0) to node (n,m). It will be convenient to work with this formulation, and while we’re talking about convenience, we might as well also assume that is a power of 2.
    Let’s start with a small addition to the edit distance algorithm that will turn out to be very useful. The optimal path in the dag must pass through an intermediate node (k,m2) for some k; show how the algorithm can be modified to also return this value k.
  3. Now consider a recursive scheme:
    Procedure find-path((0,0)(n,m))
    Compute the value kabove
    find-path ((0,0)k,m2)
    find-path k,m2n,m
    concatenate these two paths, with kin the middle.
    Show that this scheme can be made to run inO (mn) time and O(n) space.

Exon chaining.Each gene corresponds to a subregion of the overall genome (the DNA sequence); however, part of this region might be “junk DNA.” Frequently, a gene consists of several pieces called exons, which are separated by junk fragments called introns. This complicates the process of identifying genes in a newly sequenced genome.

Suppose we have a new DNA sequence and we want to check whether a certain gene (a string) is present in it. Because we cannot hope that the gene will be a contiguous subsequence, we look for partial matches—fragments of the DNA that are also present in the gene (actually, even these partial matches will be approximate, not perfect). We then attempt to assemble these fragments.

Let x 1Kndenote the DNA sequence. Each partial match can be represented by a triple li,ri,wi, where xliKriis the fragment and is a weight

representing the strength of the match (it might be a local alignment score or some other statistical quantity). Many of these potential matches could be false, so the goal is to find a subset of the triples that are consistent (nonoverlapping) and have a maximum total weight.

Show how to do this efficiently.

You are given a string of n characters s[1...n], which you believe to be a corrupted text document in which all punctuation has vanished (so that it looks something like “itwasthebestoftimes...”). You wish to reconstruct the document using a dictionary, which is available in the form of a Boolean function dict(.): for any string w,

dict(w)={trueifwisavalidwordfalseotherwise

Give a dynamic programming algorithm that determines whether the string s[.]can be reconstituted as a sequence of valid words. The running time should be at mostO(n2) , assuming calls to dict take unit time.

In the event that the string is valid, make your algorithm output the corresponding sequence of words.

Here is yet another variation on the change-making problem (Exercise 6.17). Given an unlimited supply of coins of denominations x1,x2,x3.........xnwe wish to make change for a value v using at most k coins; that is, we wish to find a set ofkcoins whose total value is v. This might not be possible: for instance, if the denominations are 5 and 10 and k=6, then we can make change for 55 but not for 65. Give an efficient dynamic-programming algorithm for the following problem. Input: ; x1,x2,x3.........xn;k;v.Question: Is it possible to make change for v using at most k coins, of denominations x1,x2,x3.........xn?

The garage sale problem (courtesy of Professor Lofti Zadeh). On a given Sunday morning, there are n garage sales going on, g1,g2,g3............gn. For each garage sale gj, you have an estimate of its value to you, vj. For any two garage sales you have an estimate of the transportation cost dijof getting from gito gj. You are also given the costs d0jand dj0of going between your home and each garage sale. You want to find a tour of a subset of the given garage sales, starting and ending at home, that maximizes your total benefit minus your total transportation costs. Give an algorithm that solves this problem in time O(n22n).

(Hint: This is closely related to the traveling salesman problem.)

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free