A certain string-processing language offers a primitive operation which splits a string into two pieces. Since this operation involves copying the original string, it takes n units of time for a string of length n, regardless of the location of the cut. Suppose, now, that you want to break a string into many pieces. The order in which the breaks are made can affect the total running time. For example, if you want to cut a 20-character string at positions 3 and 10, then making the first cut at position 3 incurs a total cost of 20+17=37, while doing position first has a better cost of 20+17=37.

Give a dynamic programming algorithm that, given the locations of m cuts in a string of length , finds the minimum cost of breaking the string into m +1 pieces.

Short Answer

Expert verified

It is given in the question, that the primitive operation will take 0n time for copying the original string of length ‘n’. Hence, the cost of complete algorithm will be greater then 0n.

To get minimum cost of breaking the string, we will use dynamic programming algorithm and define our recursion relation which will be our subproblem.

Step by step solution

01

Defining the Subproblem

Let us suppose that we have input string ‘S’ of length ‘n’. Then, also let ‘i’ denote the position of cut. Thusi=1,2.....m.

So, if m cuts are made, that means we havesubstrings.

So, let atmade the cut on our original string

So, we got two substrings: S1....iandSi+1...n . But stillm-1cut is to be made. Now, two cases will arise:

  • Ifm-1remaining cut is made in substringS1....i
  • Ifm-1remaining cut is made in substringSi+1...n

In any one of the above two case, there must be minimum cost.

Let x0,x2,....xm+1be the position(index) where we have to make cut. Here, x1=0and xm=n.

Let Li,jdenotes the minimum cost to cut the string, and i=0...mand j=1....m+1.

These strings will start from xiand ends to xj.

So our recursive equation will be:

L(i,j)={0;forj=i+1xj-xi+mini<k<jLi,k,Lk+1,j;forj>i+1

02

Analysing the recursive equation

The above recursive relation will run for 0n2And it is already mention in the question that we use primitive operation to store each string. And taking our string of length ‘n’, our effective time complexity will be0n3.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The garage sale problem (courtesy of Professor Lofti Zadeh). On a given Sunday morning, there are n garage sales going on, g1,g2,g3............gn. For each garage sale gj, you have an estimate of its value to you, vj. For any two garage sales you have an estimate of the transportation cost dijof getting from gito gj. You are also given the costs d0jand dj0of going between your home and each garage sale. You want to find a tour of a subset of the given garage sales, starting and ending at home, that maximizes your total benefit minus your total transportation costs. Give an algorithm that solves this problem in time O(n22n).

(Hint: This is closely related to the traveling salesman problem.)

Sequence alignment. When a new gene is discovered, a standard approach to understanding its function is to look through a database of known genes and find close matches. The closeness of two genes is measured by the extent to which they are aligned. To formalize this, think of a gene as being a long string over an alphabet ={A,C,G,T}. Consider two genes (strings) x=ATGCCand y=TACGCA. An alignment of x and y is a way of matching up these two strings by writing them in columns, for instance:

A-T-GCCTA-CGC

Here the “_” indicates a “gap.” The characters of each string must appear in order, and each column must contain a character from at least one of the strings. The score of an alignment is specified by a scoring matrixδof size (+1)×(+1), where the extra row and column are to accommodate gaps. For instance the preceding alignment has the following score:

δ(-T)+δ(A,A)+δ(T,-)+δ(G,G)+δ(C,C)+δ(C,A)

Give a dynamic programming algorithm that takes as input two strings X[1K n] and Y {1K m} and a scoring matrix δand returns the highest-scoring alignment. The running time should be O(mn) .

Time and space complexity of dynamic programming. Our dynamic programming algorithm for computing the edit distance between strings of length m and n creates a table of size n×mand therefore needs O (mn) time and space. In practice, it will run out of space long before it runs out of time. How can this space requirement be reduced?

  1. Show that if we just want to compute the value of the edit distance (rather than the optimal sequence of edits), then only O(n) space is needed, because only a small portion of the table needs to be maintained at any given time.
  2. Now suppose that we also want the optimal sequence of edits. As we saw earlier, this problem can be recast in terms of a corresponding grid-shaped dag, in which the goal is to find the optimal path from node (0,0) to node (n,m). It will be convenient to work with this formulation, and while we’re talking about convenience, we might as well also assume that is a power of 2.
    Let’s start with a small addition to the edit distance algorithm that will turn out to be very useful. The optimal path in the dag must pass through an intermediate node (k,m2) for some k; show how the algorithm can be modified to also return this value k.
  3. Now consider a recursive scheme:
    Procedure find-path((0,0)(n,m))
    Compute the value kabove
    find-path ((0,0)k,m2)
    find-path k,m2n,m
    concatenate these two paths, with kin the middle.
    Show that this scheme can be made to run inO (mn) time and O(n) space.

You are given a string of n characters s[1...n], which you believe to be a corrupted text document in which all punctuation has vanished (so that it looks something like “itwasthebestoftimes...”). You wish to reconstruct the document using a dictionary, which is available in the form of a Boolean function dict(.): for any string w,

dict(w)={trueifwisavalidwordfalseotherwise

Give a dynamic programming algorithm that determines whether the string s[.]can be reconstituted as a sequence of valid words. The running time should be at mostO(n2) , assuming calls to dict take unit time.

In the event that the string is valid, make your algorithm output the corresponding sequence of words.

A contiguous subsequence of a list Sis a subsequence made up of consecutive elements of S. For instance, if Sis 5,15,30,10,5,40,10

then15,30,10 is a contiguous subsequence but5,15,40 is not. Give a linear-time algorithm for the following task:Input: A list of numbers a1,a2,...,an.

Output: The contiguous subsequence of maximum sum (a subsequence of length zero has sum zero).For the preceding example, the answer would be 10,5,40,10, with a sum of 55. (Hint: For each j{1,2,...,n}, consider contiguous subsequences ending exactly at position j.)

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free