Chapter 4: Problem 23
Assume the variables \(a=2, b=4,\) and \(c=6 .\) Circle the \(T\) or \(F\) for each of the following conditions to indicate whether its value is true or false.
Chapter 4: Problem 23
Assume the variables \(a=2, b=4,\) and \(c=6 .\) Circle the \(T\) or \(F\) for each of the following conditions to indicate whether its value is true or false.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe following truth table shows various combinations of the values true and false connected by a logical operator. Complete the table by circling T or \(\mathrm{F}\) to indicate whether the result of such a combination is true or false. $$\begin{array}{lcc} \text { Logical Expression } & \text { Result (circle T or F) } \\ \text { True AND False } & \mathrm{T} & \mathrm{F} \\ \text { True AND True } & \mathrm{T} & \mathrm{F} \\ \text { False AND True } & \mathrm{T} & \mathrm{F} \\ \text { False AND False } & \mathrm{T} & \mathrm{F} \\ \text { True OR False } & \mathrm{T} & \mathrm{F} \\ \text { True or True } & \mathrm{T} & \mathrm{F} \\ \text { False or True } & \mathrm{T} & \mathrm{F} \\ \text { False or False } & \mathrm{T} & \mathrm{F} \\ \text { Not True } & \mathrm{T} & \mathrm{F} \\ \text { NOT False } & \mathrm{T} & \mathrm{F} \end{array}$$
If the following pseudocode were an actual program, what would it display? Declare String s1 = "New York" Declare String s2 = "Boston" If s1 > s2 Then Display s2 Display s1 Else Display s1 Display s2 End If
What statement do you use in pseudocode to write a dual alternative decision structure?
You need to write a multiple alternative decision structure, but the language you are using will not allow you to perform the test you need in a select Case statement. What can you do to achieve the same results?
Write an If-Then statement that displays the message "The number is valid" if the variable speed is within the range 0 through 200 .
What do you think about this solution?
We value your feedback to improve our textbook solutions.