Chapter 14: Problem 8
Let \(I=\int \frac{e^{x}}{e^{4 x}+e^{2 x}+1} d x, \quad J=\int \frac{e^{-x}}{e^{-4 x}+e^{-2 x}+1} d x .\) Then, for an arbitrary constant \(C\), the value of \(J-I\) equals (A) \(\frac{1}{2} \log \left(\frac{e^{4 x}-e^{2 x}+1}{e^{4 x}+e^{2 x}+1}\right)+C\) (B) \(\frac{1}{2} \log \left(\frac{e^{2 x}+e^{x}+1}{e^{2 x}-e^{x}+1}\right)+C\) (C) \(\frac{1}{2} \log \left(\frac{e^{2 x}-e^{x}+1}{e^{2 x}+e^{x}+1}\right)+C\) (D) \(\frac{1}{2} \log \left(\frac{e^{4 x}+e^{2 x}+1}{e^{4 x}-e^{2 x}+1}\right)+C\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.