Chapter 14: Problem 9
Let \(g(x)=\log f(x)\) where \(f(x)\) is a twice differentiable positive function on \((0, \infty)\) such that \(f(x+1)=x f(x)\). Then, for \(N=1,2,3, \ldots\), \(g^{\prime \prime}\left(N+\frac{1}{2}\right)-g^{\prime \prime}\left(\frac{1}{2}\right)=\) (A) \(-4\left\\{1+\frac{1}{9}+\frac{1}{25}+\cdots+\frac{1}{(2 N-1)^{2}}\right\\}\) (B) \(4\left\\{1+\frac{1}{9}+\frac{1}{25}+\cdots+\frac{1}{(2 N-1)^{2}}\right\\}\) (C) \(-4\left\\{1+\frac{1}{9}+\frac{1}{25}+\cdots+\frac{1}{(2 N+1)^{2}}\right\\}\) (D) \(4\left\\{1+\frac{1}{9}+\frac{1}{25}+\cdots+\frac{1}{(2 N+1)^{2}}\right\\}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.