Let \(p\) and \(q\) be real numbers such that \(p \neq 0, p^{3} \neq q\) and \(p^{3}
\neq-q .\) If \(\alpha\) and \(\beta\) are nonzero complex numbers satisfying
\(\alpha+\beta=-\mathrm{p}\) and \(\alpha^{3}+\beta^{3}=\mathrm{q}\), then a
quadratic equation having \(\frac{\alpha}{\beta}\) and \(\frac{\beta}{\alpha}\) as
its roots is
A) \(\left(p^{3}+q\right) x^{2}-\left(p^{3}+2 q\right)
x+\left(p^{3}+q\right)=0\)
B) \(\left(p^{3}+q\right) x^{2}-\left(p^{3}-2 q\right)
x+\left(p^{3}+q\right)=0\)
C) \(\left(p^{3}-q\right) x^{2}-\left(5 p^{3}-2 q\right)
x+\left(p^{3}-q\right)=0\)
D) \(\left(p^{3}-q\right) x^{2}-\left(5 p^{3}+2 q\right)
x+\left(p^{3}-q\right)=0\)