Chapter 4: Problem 21
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 4: Problem 21
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeA piece of ice (heat capacity \(=2100 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\) and latent heat \(=3.36 \times 10^{5} \mathrm{~J} \mathrm{~kg}^{-1}\) ) of mass \(\mathrm{m}\) grams is at \(-5^{\circ} \mathrm{C}\) at atmospheric pressure. It is given \(420 \mathrm{~J}\) of heat so that the ice starts melting. Finally when the ice-water mixture is in equilibrium, it is found that \(1 \mathrm{gm}\) of ice has melted. Assuming there is no other heat exchange in the process, the value of \(\mathrm{m}\) is
The value(s) of \(\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x\) is (are) A) \(\frac{22}{7}-\pi\) B) \(\frac{2}{105}\) C) 0 D) \(\frac{71}{15}-\frac{3 \pi}{2}\)
Let \(\mathrm{f}, \mathrm{g}\) and \(\mathrm{h}\) be real-valued functions defined on the interval \([0,1]\) by \(\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}^{2}}+\mathrm{e}^{-\mathrm{x}^{2}}, \mathrm{~g}(\mathrm{x})=\mathrm{x} \mathrm{e}^{\mathrm{x}^{2}}+\mathrm{e}^{-\mathrm{x}^{2}}\) and \(\mathrm{h}(\mathrm{x})=\mathrm{x}^{2} \mathrm{e}^{\mathrm{x}^{2}}+\mathrm{e}^{-\mathrm{x}^{2}}\). If \(\mathrm{a}, \mathrm{b}\) and \(\mathrm{c}\) denote, respectively, the absolute maximum of \(\mathrm{f}, \mathrm{g}\) and \(\mathrm{h}\) on \([0,1]\), then A) \(a=b\) and \(c \neq b\) B) \(a=c\) and \(a \neq b\) C) \(a \neq b\) and \(c \neq b\) D) \(a=b=c\)
The ionization isomer of \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}\) is A) \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{O}_{2} \mathrm{~N}\right)\right] \mathrm{Cl}_{2}\) B) \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{C} 1_{2}\right]\left(\mathrm{NO}_{2}\right)\) C) \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}(\mathrm{ONO})\right] \mathrm{Cl}\) D) \(\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}\)
A point mass of \(1 \mathrm{~kg}\) collides elastically with a stationary point mass of \(5 \mathrm{~kg}\). After their collision, the \(1 \mathrm{~kg}\) mass reverses its direction and moves with a speed of \(2 \mathrm{~ms}^{-1}\). Which of the following statement(s) is (are) correct for the system of these two masses ? A) Total momentum of the system is \(3 \mathrm{~kg} \mathrm{~ms}^{-1}\) B) Momentum of \(5 \mathrm{~kg}\) mass after collision is \(4 \mathrm{~kg} \mathrm{~ms}^{-1}\) C) Kinetic energy of the centre of mass is \(0.75 \mathrm{~J}\) D) Total kinetic energy of the system is \(4 \mathrm{~J}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.